Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Băng Nhi
Xem chi tiết
dbrby
Xem chi tiết
I don
14 tháng 1 2019 lúc 22:09

Thay xyzt = 1 vào P, có:

P= \(\frac{x}{xyz+xy+x+xyzt\ }\) + \(\frac{y}{yzt+yz+y+1}+\frac{z}{xzt+zt+z+xyzt}+\frac{t}{xyt+tx+t+1}\)

\(P=\frac{x}{x.\left(yz+y+1+yzt\right)}+\frac{y}{yzt+yz+y+1}+\frac{z}{z.\left(xt+t+1+xyt\right)}+\frac{t}{xyt+tx+t+1}\)

\(P=\frac{1\ +y}{yz+y+yzt+1}\) \(+\frac{1+t}{xyt+tx+t+1}\)

\(P=\frac{1+y}{yz+y+yzt+xyzt\ }+\frac{1+t}{xyt+tx+t+1}\)

\(P=\frac{1+y}{y.z.\left(xyt+tx+t+1\right)}+\frac{yz+tyz}{yz.\left(xyt+tx+t+1\right)}\)

\(P=\frac{1+y+yz+tyz}{yz.\left(xyt+tx+t+1\right)}=\frac{1+y+yz+tyz}{xyzt.\left(1+y+yz+tyz\right)}=\frac{1}{xyzt}=1\)

KL: P = 1 tại xyzt=1

Nguyễn Thị Thảo Vy
18 tháng 1 2019 lúc 19:57

\(\dfrac{x}{xyz+xy+x+1}+\dfrac{y}{yzt+yz+y+1}+\dfrac{z}{xzt+zt+z+1}+\dfrac{t}{xyt+tx+t+1}\)

= \(\dfrac{x}{xyz+xy+x+1}+\dfrac{xy}{xyzt+xyz+xy+x}+\dfrac{xyz}{x^2yzt+xyzt+xyz+xy}+\dfrac{xyzt}{x^{2^{ }}y^2zt+x^2yzt+xyzt+xyz}\)

= \(\dfrac{x}{xyz+xy+x+1}+\dfrac{xy}{1+xyz+xy+x}+\dfrac{xyz}{x+1+xyz+xy}+\dfrac{1}{xy+x+1+xyz}\)

= \(\dfrac{x+xy+xyz+1}{x+xy+xyz+1}\)

= 1

Ruby
Xem chi tiết
Y
9 tháng 2 2019 lúc 22:04

\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+xyzt}+\)

\(\dfrac{xy}{xy+xyz+xyzt+xyzt\cdot x}+\dfrac{xyz}{xyz+xyzt+xyzt\cdot x+xyzt\cdot xy}\)

\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+1}+\)

\(\dfrac{xy}{xy+xyz+1+x}+\dfrac{xyz}{xyz+1+x+xy}\) ( do xyzt = 1 )

\(P=\dfrac{1+x+xy+xyz}{1+x+xy+xyz}=1\)

123456789
Xem chi tiết
Ngô Chấn Hưng
Xem chi tiết
Yen Nhi
4 tháng 2 2022 lúc 21:07

Answer:

\(P=\frac{1}{1+x+xy+xyz}+\frac{1}{1+y+yz+yzt}+\frac{1}{1+z+zt+ztx}+\frac{1}{1+t+tx+txy}\)

\(=\frac{1}{1+x+xy+xyz}+\frac{x}{x+xy+xyz+xyzt}+\frac{xy}{xy+xyz+xyzt+xyzt.x}+\frac{xyz}{xyz+xyzt+xyzt.x+xyzt.xy}\)

\(=\frac{1}{1+x+xy+xyz}+\frac{x}{x+xy+xyz+1}+\frac{xy}{xy+xyz+1+x}+\frac{xyz}{xyz+1+x+xy}\)

\(=\frac{1+x+xy+xyz}{1+x+xy+xyz}\)

\(=1\)

Khách vãng lai đã xóa
dam thu a
Xem chi tiết
Akai Haruma
24 tháng 2 2020 lúc 15:58

Lời giải:

Đặt biểu thức vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(A[x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)]\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2\)
Vì $xyzt=1$ nên:

\(x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)=\frac{1}{t}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{x}+\frac{1}{t}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

Do đó:

$A. 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2$

$\Rightarrow A\geq \frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{3}$

Áp dụng BĐT AM-GM: \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq 4\sqrt[4]{\frac{1}{xyzt}}=4$

Vậy $A\geq \frac{4}{3}$ (đpcm)

Khách vãng lai đã xóa
Lê Văn Đăng Khoa
Xem chi tiết
Nam Hà Ứng
Xem chi tiết
Ryan Park
Xem chi tiết
 Mashiro Shiina
28 tháng 12 2017 lúc 14:00

Từ \(xyzt=1\) ta có: \(\dfrac{1}{x^3\left(yz+zt+ty\right)}=\dfrac{xyzt}{x^3\left(yz+zt+ty\right)}=\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\)

Đánh giá tương tự ta có:

\(pt\Leftrightarrow\dfrac{yzt}{x^2\left(yz+zt+ty\right)}+\dfrac{xzt}{y^2\left(xz+zt+tx\right)}+\dfrac{xyt}{z^2\left(xy+yt+tx\right)}+\dfrac{xyz}{t^2\left(xy+yz+zx\right)}\ge3\left(yzt+xzt+xyt+xyz\right)=3yzt+3xzt+3xyt+3xyz\)

Ta sẽ chứng minh:

\(\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\ge3yzt\). Cộng theo vế rồi suy ra đpcm

T gần đi học r,có gì tối về giải full cho

Neet
29 tháng 12 2017 lúc 20:12

Áp dụng cauchy-schwarz:

\(VT=\sum\dfrac{\dfrac{1}{x^2}}{\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)^2}{3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)}=VF\)

Quỳnh Trâm
21 tháng 5 2018 lúc 10:40

@Neet

\(VT=\dfrac{1}{x^3\left(yz+zt+ty\right)}+\dfrac{1}{y^3\left(xz+zt+tx\right)}+\dfrac{1}{z^3\left(xy+yt+tx\right)}+\dfrac{1}{t^3\left(xy+yz+xz\right)}\)

\(=\dfrac{\dfrac{1}{x^2}}{xyz+xzt+xyt}+\dfrac{\dfrac{1}{y^2}}{xyz+yzt+txy}+\dfrac{\dfrac{1}{z^2}}{xyz+yzt+ztx}+\dfrac{\dfrac{1}{t^2}}{xyt+yzt+txz}\)

\(=\dfrac{\dfrac{1}{x^2}}{\dfrac{xyz}{xyzt}+\dfrac{xzt}{xyzt}+\dfrac{xyt}{xyzt}}+\dfrac{\dfrac{1}{y^2}}{\dfrac{xyz}{xyzt}+\dfrac{yzt}{xyzt}+\dfrac{txy}{xyzt}}+\dfrac{\dfrac{1}{z^2}}{\dfrac{xyz}{xyzt}+\dfrac{yzt}{xyzt}+\dfrac{ztx}{xyzt}}+\dfrac{\dfrac{1}{t^2}}{\dfrac{xyt}{xyzt}+\dfrac{yzt}{xyzt}+\dfrac{txz}{xyzt}}\)

\(=\dfrac{\dfrac{1}{x^2}}{\dfrac{1}{t}+\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\dfrac{1}{y^2}}{\dfrac{1}{t}+\dfrac{1}{x}+\dfrac{1}{z}}+\dfrac{\dfrac{1}{z^2}}{\dfrac{1}{t}+\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\dfrac{1}{t^2}}{\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}}\)

\(\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)^2}{3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)}=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)=VP\)