\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+xyzt}+\)
\(\dfrac{xy}{xy+xyz+xyzt+xyzt\cdot x}+\dfrac{xyz}{xyz+xyzt+xyzt\cdot x+xyzt\cdot xy}\)
\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+1}+\)
\(\dfrac{xy}{xy+xyz+1+x}+\dfrac{xyz}{xyz+1+x+xy}\) ( do xyzt = 1 )
\(P=\dfrac{1+x+xy+xyz}{1+x+xy+xyz}=1\)