\(A=\dfrac{5}{x+xy+xyz}+\dfrac{5x}{xy+xyz+x}+\dfrac{5xy}{xyz+x.xyz+xy}\)
Vì \(xyz=1\)
\(\Rightarrow A=\dfrac{5}{x+xy+xyz}+\dfrac{5x}{xy+xyz+x}+\dfrac{5xy}{xyz+x+xy}\)
\(\Rightarrow A=5.\dfrac{x+xy+xyz}{x+xy+xyz}=5\)
\(A=\dfrac{5}{x+xy+xyz}+\dfrac{5x}{xy+xyz+x}+\dfrac{5xy}{xyz+x.xyz+xy}\)
Vì \(xyz=1\)
\(\Rightarrow A=\dfrac{5}{x+xy+xyz}+\dfrac{5x}{xy+xyz+x}+\dfrac{5xy}{xyz+x+xy}\)
\(\Rightarrow A=5.\dfrac{x+xy+xyz}{x+xy+xyz}=5\)
Tìm x,y,z biết
\(\dfrac{\sqrt{xy}-1}{3}=\dfrac{\sqrt{yz-3}}{9}=\dfrac{\sqrt{zx-5}}{6}\) và \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=11\)
biết xyz=1
tính A=\(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
Cho 3 so x, y, z thoa man xyz = 2018. CMR :
\(\dfrac{2018x}{xy+2018+2018z}+\dfrac{y}{yz+y+2018}+\dfrac{z}{xz+z+1}=1\)
Câu 1 : (4d) Tính giá trị của biểu thức :
\(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(b,B=1+3^2+3^3+........+3^{2018}\)
Câu 2 : (5d)
a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\)
b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\)
c, Tìm x;y;z biết rằng :\(xy=z;yz=4x;xz=9y\)
Câu 3 : (5d)
a, Biết xyz = 1. Tính tổng :\(A=\dfrac{5}{x+xy+1}+\dfrac{5}{y+yz+1}+\dfrac{5}{z+zx+1}\)
b, Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR:\dfrac{3\cdot a^6+c^6}{3\cdot b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(b+d\ne0\right)\)
c, Cho :\(a;b;c>0;\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+d-c}{c}\)
Tính giá trị biểu thức :
\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Câu 4 : (4d)
a, Tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|2016-x\right|+\left|2017-x\right|\left|2018-x\right|\)
b, Cho biểu thức : \(B=\dfrac{8-x}{x-3}\). Tìm các giá trị nguyên của x để B có giá trị nhỏ nhất.
Câu 5 : (2d) { Câu dễ nhất lun nè!!!!!}
Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{z}{x+y+t}=\dfrac{t}{x+y+z}\)
CMR : A là một số nguyên, biết :
\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{x+t}{y+z}\)
Đây là đề thi để loại hsg ai làm đc làm hộ mk nhé, đặc biệt là câu 3a và câu 4b! Thanks nhìu !!!!!!!!!!
Cho các số x, y, z, t thỏa mãn xyzt=1. Tính P= \(\dfrac{1}{1+x+xy+xyz}+\dfrac{1}{1+y+yz+yzt}+\dfrac{1}{1+z+zt+ztx}+\dfrac{1}{1+t+tx+txy}\)
Chứng minh rằng nếu : |x| ≥ 3 ; |y| ≥ 3 ; |z| ≥ 3 thì \(A = \dfrac{xy+yz+zx}{xyz} \) có giá trị nhỏ hơn hoặc bằng 1 .
Cho các số x,y,z,t thoả mãn điều kiện xyzt = 1
Tính tổng : P = \(\dfrac{1}{1+x+xy+xyz}+\dfrac{1}{1+y+yz+yzt}+\dfrac{1}{1+z+zt+ztx}+\dfrac{1}{1+t+tx+txy}\)
Tìm x, biết rằng:
1) ( 2x + 1)3 = -0,001
2) ( 2x -3 )4 = ( 2x-3 )6
3) ( 2x+1 )5 = ( 2x+1)2010
4) \(\dfrac{8}{25}=\dfrac{2^x}{5^{x-1}}\)
5) 9x : 3x = 3
6) \(3^x+3^{x+3}=756\)
7) \(5^{x+1}+6.5^{x+1}=875\)
8) \(2^{x-1}.3^{y+1}=12^{x+9}\)
9) \(3^x=9^{y-1}\)
10) \(2^{x+1}.5^y=20^x\)
11) 15x : 3y = 75y
12) \(\dfrac{3}{5}:\dfrac{2x}{15}=\dfrac{1}{2}:\dfrac{4}{5}\)
13) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và xy + yz + zx = 104
Cho xyz = 1. Tính giá trị biểu thức :
P = \(\dfrac{1}{1+x+xy}\)+\(\dfrac{1}{1+y+yz}\)+\(\dfrac{1}{1+z+xz}\)