Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2018 lúc 10:26

a) √2 cos(x - π/4)

= √2.(cosx.cos π/4 + sinx.sin π/4)

= √2.(√2/2.cosx + √2/2.sinx)

= √2.√2/2.cosx + √2.√2/2.sinx

= cosx + sinx (đpcm)

b) √2.sin(x - π/4)

= √2.(sinx.cos π/4 - sin π/4.cosx )

= √2.(√2/2.sinx - √2/2.cosx )

= √2.√2/2.sinx - √2.√2/2.cosx

= sinx – cosx (đpcm).

Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 0:26

\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)

\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)

\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)

\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)

Bạn ghi ko đúng đề

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 7:22

Để \(cos\left(x-\dfrac{\Omega}{4}\right);sinx;cos\left(x+\dfrac{\Omega}{4}\right)\) là ba số hạng liên tiếp của cấp số nhân thì \(sin^2x=cos\left(x-\dfrac{\Omega}{4}\right)\cdot cos\left(x+\dfrac{\Omega}{4}\right)\)

=>\(sin^2x=\sqrt{2}\left(cosx-sinx\right)\cdot\sqrt{2}\left(cosx+sinx\right)\)

=>\(sin^2x=2cos^2x-2sin^2x\)

=>\(3\cdot sin^2x=2\cdot cos^2x\)

=>\(\dfrac{sin^2x}{cos^2x}=\dfrac{2}{3}\)

=>\(tan^2x=\dfrac{2}{3}\)

=>\(\left[{}\begin{matrix}tanx=\dfrac{\sqrt{6}}{3}\\tanx=-\dfrac{\sqrt{6}}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(\dfrac{\sqrt{6}}{3}\right)+k\Omega\\x=arctan\left(-\dfrac{\sqrt{6}}{3}\right)+k\Omega\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 6 2018 lúc 17:56

Sai

Phạm Phương Thảo
Xem chi tiết
Xích Ma
6 tháng 10 2016 lúc 13:15

câu 1:xét sinx=o

xét sinx khác 0

chia phương trình cho cos3x

ta được 1 phương trình mới:

4+3tanx-\(\frac{1}{sin^2x}\)-tan3x=0

<=>4+3tanx-(1+cot2x)-tan3x=0

<=>4+3tanx-1-\(\frac{1}{tan^2x}\)-tan3x=o

nhân cho tan2x ta được 1 phương trình bậc 5 với tanx

Nguyễn Hà Duyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2018 lúc 18:19

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2018 lúc 9:31

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 7 2017 lúc 18:27

Đáp án B