phân tích thành nhân tử với x>=0
a, x-1
b, x-\(\sqrt{x}\)-2
c, x\(\sqrt{x}\)+1
Phân tích thành nhân tử:
a. xy - y\(\sqrt{x}\) + \(\sqrt{x}\) - 1
b. xy + y\(\sqrt{x}\) + \(\sqrt{x}\) + 1
HELP ME!!!
\(a,=\sqrt{xy}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{xy}+1\right)\left(\sqrt{x}-1\right)\\ b,=\sqrt{xy}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{xy}+1\right)\)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
phân tích đa thức thành nhân tử
\(x+2\sqrt{x-1}\) (với x≥1)
\(x-4\sqrt{x-2}+2\) ( với x ≥2)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
Phân tích thành nhân tử: x * sqrt(x) + 2x + sqrt(x) +2(với x>0)
\(x\sqrt{x}+2x+\sqrt{x}+2\left(x>0\right)\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)+\left(2x+2\right)\)
\(=\sqrt{x}\left(x+1\right)+2\left(x+1\right)\)
\(=\left(\sqrt{x}+2\right)\left(x+1\right)\)
Phân tích thành nhân tử ( với x > hoặc bằng 0 )
\(x\sqrt{x}-1\)
\(=\left(\sqrt{x}\right)^3-1^3=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(x\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
A= 1
B = \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\) : \(\dfrac{2\sqrt{x}}{x+2\sqrt{x}}\)với x > 0
a) Rút gọn B
b) Tìm x để B>2A
a: \(B=\dfrac{\sqrt{x}+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{x+2\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: B>2A
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}>2\)
=>-căn x+1>0
=>-căn x>-1
=>căn x<1
=>0<x<1
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
phân tích đa thức thành nhân tử
\(x\sqrt{x}-9\)
\(x-\sqrt{x}-6\)
\(2x+5\sqrt{x}-3\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
phân tích thành nhân tử:
\(x+\sqrt{x}+1\)