Tính Nhanh:
a)1532-532
b)20202-20192+20182-20172+...+22-12
Tính nhanh
1, 1532+94.135+472
2,1,24-2,48.0,24=0,242
3, 2055-955
4,38.58-(154-1)(154+1)
5,12-22+32-42+...-20192+20202
6,(2+1)(22+1)(24+1)...(22020+1)+1
1.
$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$
2.
$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$
3. Không phù hợp để tính nhanh
4.
$=15^8-(15^8-1)=1$
5.
$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$
$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$
$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$
$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$
6:
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)
Tính nhanh:
a) 172-14.17+49
b) 20212-20202
a. Ta có: \(17^2-14.17+49=17^2-2.7.17+7^2=\left(17-7\right)^2=10^2=100\)
b. \(2021^2-2020^2=\left(2021-2020\right)\left(2021+2020\right)=4041\)
Tổng S = 1 2 . C 2018 1 . 2 0 + 2 2 . C 2018 2 . 2 1 + 3 2 . C 2018 3 . 2 2 + . . . + 2018 2 . C 2018 2018 . 2 2017 = 2018 . 3 a . ( 2 b + 1 ) ,
với a, b là các số nguyên dương và (2b+1) không chia hết cho 3.
Tính a+b.
A. 2017
B. 4035
C. 4034
D. 2018
Tổng S = 1 2 . C 2018 1 .2 0 + 2 2 . C 2018 2 .2 1 + 3 2 . C 2018 3 .2 2 + ... + 2018 2 . C 2018 2018 .2 2017 = 2018.3 a . 2. b + 1 với a,b là các số nguyên dương và 2. b + 1 không chia hết cho 3. Tính a + b .
A. 2017
B. 4035
C. 4043
D. 2018
B4: Tính nhanh:
a, \(12.\dfrac{-7}{11}.\dfrac{5}{6}.\dfrac{22}{7}\)
b, \(\dfrac{-8}{15}.\dfrac{7}{9}.\dfrac{5}{8}.\left(-18\right)\)
\(a,12.\dfrac{-7}{11}.\dfrac{5}{6}.\dfrac{22}{7}=\left(12.\dfrac{5}{6}\right)\left(\dfrac{-7}{11}.\dfrac{22}{7}\right)=10.\left(-2\right)=-20\\ b,\dfrac{-8}{15}.\dfrac{7}{9}.\dfrac{5}{8}.\left(-18\right)=\left(\dfrac{-8}{15}.\dfrac{5}{8}\right)\left[\dfrac{7}{9}.\left(-18\right)\right]=\dfrac{-1}{3}.\left(-14\right)=\dfrac{14}{3}\)
a) 12.−711.56.227= (12.56)(−711.227)= 10.(−2)= −20.
b) −815.79.58.(−18)= (−815.58)[79.(−18)]= −13.(−14)= 143.
Cho khai triển P x = 1 + x 1 + 2 x . . . 1 + 2017 x = a 0 + a 1 x + . . . + a 2017 x 2017 .
Tính giá trị biểu thức T = a 2 + 1 2 1 2 + 2 2 + . . . + 2017 2
A. 2016 . 2017 2 2
B. 2017 . 2018 2 2
C. 1 2 . 2016 . 2017 2 2
D. 1 2 . 2017 . 2018 2 2
Cho khai triển:
P x = 1 + x 1 + 2 x .. 1 + 2017 x = a 0 + a 1 x + .. + a 2017 x 2017 .
Tính giá trị biểu thức T = a 2 + 1 2 1 2 + 2 2 + ... + 2017 2 .
A. 2016.2017 2 2
B. 2017.2018 2 2
C. 1 2 . 2016.2017 2 2
D. 1 2 . 2017.2018 2 2
Đáp án D
Ta có 1 2 + 2 2 + 3 2 + ... + n 2 = n n + 1 2 n + 1 6
và 1 + 2 + 3 + ... + n 2 = n n + 1 2
Xét 1 + x 1 + 2 x ... 1 + n x ⇒ Hệ số của x 2 là
a 2 = 1. 2 + 3 + ... + n + 2. 3 + 4 + ... + n + ... + n − 1 n
= 1. 1 + 2 + ... + n − 1 + 2. 1 + 2 + ... + n − 1 + 2 + ... + n − 1 . 1 + 2 + ... + n − 1 + 2 + ... + n − 1
= ∑ k = 1 n k × n n + 1 2 − k k + 1 2
= 1 2 ∑ k = 1 n k × n 2 + n − k 2 + k
= 1 2 ∑ k = 1 n n 2 + n k − k 3 + k 2
= 1 2 = n 2 + n 2 8 − n n + 1 2 n + 1 12
n 2 + n 2 2 − n 2 + n 2 4 − n n + 1 2 n + 1 6
Vậy T = n 2 + n 2 8
→ n − 2017 T = 2017.2018 2 8 = 1 2 2017.2018 2 2
Tính nhanh:
a) (-48) + 10 + (-22) + (-10)
a) \(\left(-48\right)+10+\left(-22\right)+\left(-10\right)\)
\(=\left[\left(-48\right)+\left(-22\right)\right]+\left(-10+10\right)\)
\(=-70+0=-70\)
tính nhanh:
a,3,31x5+6x3,31-3,31 b,48/100+22%+5/100+0,25
`b)48/100+22/100+5/100+25/100`
`=>(48/100+22/100)+(5/100+25/100)`
`=>70/100+70/100`
`=>100/100=1`
a,3,31x5+6x3,31-3,31
=3,31x(5+6-1)
=3,31x10
=33,1
b) 48/100+22%+5/100+0,25
=48%+22%+5%+25%
=1
a,3,31x5+6x3,31-3,31
=3,31x5+6x3,31-3,31x1
=3,31 x ( 5+6-1)
= 3,31 x10
= 33,1
b,48/100+22%+5/100+0,25
= 0,48 +0,22 + 0,05 +0,25
= 1