Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thái Dương
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Trần Hoàng
16 tháng 8 2019 lúc 21:04

b) khai triển hằng đẳng thức là ra

a) nhân tích chéo

Bui Huyen
16 tháng 8 2019 lúc 21:59

\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)

\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)

tràn thị trúc oanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2022 lúc 23:12

a: \(\sin^2a+\cos^2a=1\)

\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)

hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)

b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)

\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)

Nguyễn Linh Nhi
Xem chi tiết
Pham Minh Khang
1 tháng 4 2019 lúc 21:03

ĂN CHO CÒN NÓNG:NGON.vui

Pham Minh Khang
1 tháng 4 2019 lúc 21:05

undefined

Nguyễn Việt Lâm
1 tháng 4 2019 lúc 21:11

\(sina+cosa=\frac{5}{4}\Rightarrow\left(sina+cosa\right)^2=\frac{25}{16}\)

\(\Rightarrow sin^2a+cos^2a+2sina.cosa=\frac{25}{16}\)

\(sina.cosa=\frac{\frac{25}{16}-1}{2}=\frac{9}{32}\)

b/ \(\left(sina-cosa\right)^2=sin^2a+cos^2a-2sinacosa\)

\(\left(sina-cosa\right)^2=1-2.\frac{9}{32}=\frac{7}{16}\)

\(\Rightarrow sina-cosa=\pm\frac{\sqrt{7}}{4}\)

c/ \(sin^3a-cos^3a=\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)\)

\(=\left(sina-cosa\right)\left(1+\frac{9}{32}\right)=\pm\frac{41\sqrt{7}}{128}\)

Trang Nana
Xem chi tiết
★゚°☆ Trung_Phan☆° ゚★
20 tháng 6 2020 lúc 22:31

sina.cosa=1 => sina,cosa≠0 => sina+cosa≠0

\(P=\frac{\sin^3a+\cos^3a}{\sin a+\cos a}=\frac{\left(\sin a+\cos a\right).\left(\sin^2a-\sin a.\cos a+\cos^2a\right)}{\sin a+\cos a}\)

\(=\sin^2a+\cos^2a-\sin a.\cos a=1-1=0\)

Ryoji
Xem chi tiết
Ryoji
29 tháng 4 2019 lúc 23:42

Chứng minh đẳng thức nhé các bạn !!! Mình quên ghi đầu bài

Ryoji
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2019 lúc 17:33

\(\frac{\left(sina+cosa\right)^2-1}{cota-sina.cosa}=\frac{sin^2a+cos^2a+2sina.cosa-1}{\frac{cosa}{sina}-sina.cosa}=\frac{2sin^2a.cosa}{cosa-sin^2a.cosa}\)

\(=\frac{2sin^2a.cosa}{cosa\left(1-sin^2a\right)}=\frac{2sin^2a}{cos^2a}=2tan^2a\)

Nguyễn Bá Thông
Xem chi tiết
Athanasia Karrywang
24 tháng 8 2021 lúc 15:43

tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
    [cosa =-4/5=> sina =-2/5

Khách vãng lai đã xóa
pink hà
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:21

Chia cả tử và mẫu cho \(cosa\)

\(D=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\dfrac{1}{2}}{1-\dfrac{1}{2}}=3\)