Cho tam giác ABC vuông tại A, đường cao AH, AN=12cm,BC=24cm. Tính BH,CH và diện tích tam giác ABH
cho tam giác ABC vuông tại A có AH là dường cao CH=9,6cm
a)tính BC,BH,AB,AH yinh1 diện tích tam giác ABC
b)đường thẳng đi qua (song song với AB cắt tia AH tại K
CM tam giác ACK vuông tính CK,AK
c)CM :tam giác ABH và tam giác KCH
D)CM BC .CH =AH.AK
e)cho biết tứ giác ABKC là hình gì?tính chu vi và diện tích tứ giác ABKC
cho tam giác ABC vuông tại A.Đường trung tuyến AH,đường cao AM.(H thuộc BC,M thuộc BC)
a)chứng minh tam giác ABH đồng dạng với tam giác ABC
b)chứng minh AH*AH=BH*CH
c)tính diện tích tam giác AMH biết BH=4cm,CH=9cm.
Đường trung tuyến AM đường cao AH mới đúng chứ bạn
nếu AH là đường cao, AM là đường trung tuyến mới đứng chứ!nếu vậy thì giải thế này:
a)Xét tam giác ABH và tam giác CBA
ta có góc BAC=góc AHB= 90 độ
góc B chung
Suy ra tam giác ABH đồng dạng tam giác CBA
b)vì tam giác ABH đồng dạng với tam giác CBA
GÓC BAH=GÓC ACB
xét tam giác AHB và tam giác CHA
ta có góc AHB=góc AHC=90 độ
góc BAH=góc ACH
Suy ra tam giác AHB đồng dạng với tam giác CHA
AH/HC = BH/AH
=> AH2=BH.CH
c)ta có BC=BH+CH=4+9=13
Mà AM =1/2BC=13. 1/2=6,5
ÁP dụng định lý PYTAGO vào tam giác AHM ta được:
AM2=AH2+HM2 =>HM2=AM2-AH2= 6,52-62=6.25
=>HM=2.5
Suy ra SAHM=(AH.HM) / 2 =(6 . 2,5) / 2 =7,5
Tam giác ABC vuông tại A có AB=24cm, AC=32cm. Kẻ đường cao AH.
a) Tính BC và diện tích ABC
b) Chứng minh tam giác ABH và tam giác ABC đồng dạng. Tính AH, BH, CH và SABH/SABC
c) Vẽ trunng tuyến AM. Tính SAHM
d) Gọi I, K lần lượt là trung điểm BH, CH. Chứng minh tam giác ABI đồng dạng tam giác CAK và AI vuông góc với CK
Giúp mình với... Mai nộp rồi... Nhất là câu d
Cho tam giác vuông ABC đường cao AH
a. Đường cao tương ứng với đáy BC là AH
b. Độ dài BH = 6cm, HC = 3cm. Diện tích tam
giác AHC bằng 12cm vuông. Diện tích tam giác ABH là ……..
Chiều cao AH là :
6 - 3 = 3 ( cm )
Diện tích hình tam giác ABH là :
6 x 3 : 2 = 9 ( cm2
cho tam giác ABC vuông tại A , đường cao AH chia cạnh huyền BC thành hai đoạn BH = 9cm và CH = 16cm
a, chứng minh tam giác ABH đồng dạng với tam giác CAH . tính diện tích tam giác ABC
b, gọi M , N lần lượt là trung diểm của đoạn AH, CH. đường thẳng BM cắt AN tại K . chứng minh : MK là đường cao của tam giác AMN
c, gọi D là điểm đối xứng của C qua điểm A . chứng minh AB . DH = 2 AD . BM
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, có AH là đường cao, AB = 10cm, AC = 24cm. Tính BH, HC, AH và diện tích tam giác ABC?
Xét tam giác ABC vuông ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+10^2}=26\left(cm\right)\)
\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{10^2}{26}\approx4\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{24^2}{26}\approx22\left(cm\right)\end{matrix}\right.\)
Xét tam giác ABH vuông tại H áp dung Py-ta-go ta có:
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-4^2}=2\sqrt{21}\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot2\sqrt{21}\cdot26=26\sqrt{21}\left(cm^2\right)\)
Ta có :
\(BC^2=AB^2+AC^2\left(Pitago\right)\)
\(\Leftrightarrow BC^2=100+576=676\)
\(\Leftrightarrow BC=26\left(cm\right)\)
\(AB^2=BH.BC\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{100}{26}=\dfrac{50}{13}\left(cm\right)\)
\(BC=BH-HC\)
\(\Leftrightarrow HC=BC-BH=26-\dfrac{50}{13}=\dfrac{288}{13}\left(cm\right)\)
\(AH^2=BH.HC=\dfrac{50}{13}.\dfrac{288}{13}=\dfrac{14400}{13^2}\)
\(\Leftrightarrow AH=\dfrac{120}{13}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.10.24=120\left(cm^2\right)\)
Hoặc : \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.\dfrac{120}{13}.26=120\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, ( AB< AC). Vẽ đường cao AH ( H thuộc BC)
a). Chứng minh tam giác ABH đồng dạng với tam giác ABC.
b). Tính AB. Biết BC = 10cm, BH = 3,6 cm.
c). Tìm tỉ số diện tích của tam giác ABH và tam giác ACH.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b:AB=căn 3,6*10=6(cm)
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>S HAB/S HCA=(AB/CA)^2
Cho tam giác ABC vuông tại A, AB = 5cm, AC = 12cm, đường cao AH. a) Tính BC, BH, AH. b) Gọi AM là đường trung tuyến của tam giác ABC, tính diện tích tam giác AHM
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)