Cho tam giác ABC nhọn. C/m: \(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
Giúp mình với chiều nay kiểm tra rồi !
Cho tam giác nhọn ABC . Gọi a,b,c là độ dài các cạnh đối diện với các đỉnh A,B,C .
a ) CM \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b) Có thể sẫy ra đẳng thức : sinA=sinB+sinC
\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)
\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)
\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)
\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)
Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)
\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
\(b,\) Không thể suy ra đẳng thức
Cho tam giác nhọn ABC , biết BC=a , AC = b , AB=c . Gọi S,P lần lượt là diện tích , nữa chu vi của tam giác ABC . CMR : \(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
cho tam giác ABC có 3 góc nhọn AB=c; AC=b, chứng minh:
a) \(\dfrac{SinA}{SinB}=\dfrac{a}{b}\)
b)\(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html
Cho tam giác nhọn ABC,BC=a, AC=b,AB=c.CMR:
a,\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b,Có thể xảy ra :Sin A=Sin B+Sin C
kẻ AH vuông góc với BC
đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :
sin B = \(\frac{AH}{AB}\), sin C = \(\frac{AH}{AC}\)
do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)
suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)
tương tự \(\frac{a}{sinA}=\frac{b}{sinB}\)
vậy suy ra dpcm
cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá
Giúp mình với mai kiểm tra !
Cho tam giác nhọn ABC . Gọi a,b,c là độ dài các cạnh đối diện với các đỉnh A,B,C .
a ) C/M : \(\dfrac{a}{sin_A}=\dfrac{b}{sin_B}=\dfrac{c}{sin_C}\)
b) Có thể sẫy ra đẳng thức : sinA=sinB+sinC
Cho tam giác ABC nhọn, AB=c, BC=a,CA=b
chứng minh: \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
bạn áp dụng hệ thức lượng trong tam giác vuông nha
Định lý sin đã có sẵn cần chứng minh chi nữa :))
bài này mk làm rồi ; giờ lm biến chép lại . nên bn xem trong này nha .
https://hoc24.vn/hoi-dap/question/639032.html
Cho tam giác ABC, chứng minh rằng:
a) \(Sin\dfrac{A}{2}+Sin\dfrac{B}{2}+Sin\dfrac{C}{2}\le\dfrac{3}{2}\)
b) \(SinA+SinB+SinC\le\dfrac{3\sqrt{3}}{2}\)
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
Cho tam giác nhọn ABC có BC=a , AC=b, AB=c và nội tiếp đường tròn (O;R) . Chứng minh rằng :\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
Lời giải:
Kéo dài $OA$ cắt $(O)$ tại $D$
Do $AD$ là đường kính nên $ABD$ vuông tại $B$
\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)
Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)
Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)
Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)
Cho tam giác nhọn ABC,BC=a, AC=b,AB=c.CMR:
a,\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b,Có thể xảy ra :Sin A=Sin B+Sin c
a, ( Định lý Sin)
b, Áp dụng T/C tỉ lệ thức
Xảy ra \(\Leftrightarrow a=b+c\)