Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Huy Hoàng
Xem chi tiết
NBH Productions
9 tháng 9 2018 lúc 16:10

\(\orbr{\begin{cases}\hept{\begin{cases}\text{x=2}\\y=0\end{cases}}\\\hept{\begin{cases}\text{x=\text{-}1}\\y=1\end{cases}}\end{cases}}\)

Phạm Tuấn Đạt
4 tháng 2 2019 lúc 15:18

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+y^2+y^2+2.\frac{3}{2}y+\frac{9}{4}-\frac{25}{4}=0\)

\(\Rightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)

Do x,y nguyên

\(\Rightarrow\left(y+\frac{3}{2}\right)^2=\orbr{\begin{cases}\frac{25}{4}\\\frac{9}{4}\end{cases}}\)(chọn những số 

\(\Rightarrow y=...\)

\(\Rightarrow x=...\)

Kiệt Nguyễn
25 tháng 7 2020 lúc 16:30

\(x^2+2y^2+2xy+3y-4=0\)\(\Leftrightarrow x^2+2yx+\left(2y^2+3y-4\right)=0\)

Coi đây là phương trình theo ẩn x thì \(\Delta=\left(2y\right)^2-4\left(2y^2+3y-4\right)=-4y^2-12y+16\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-4y^2-12y+16\ge0\Leftrightarrow y^2+3y-4\le0\Leftrightarrow\left(y+4\right)\left(y-1\right)\le0\)

TH1: \(\hept{\begin{cases}y+4\ge0\\y-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge-4\\y\le1\end{cases}}\)hay \(-4\le y\le1\)

TH2: \(\hept{\begin{cases}y+4\le0\\y-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\le-4\\y\ge1\end{cases}}\)(loại)

Vậy \(-4\le y\le1\)mà y nguyên nên \(y\in\left\{-4;-3;-2;-1;0;1\right\}\)

Thay lần lượt các giá trị của y vào phương trình đã cho, ta được:

*) \(y=-4\Rightarrow x=4\)

*) \(y=-3\Rightarrow x\in\left\{1;5\right\}\)

*) \(y=-2\)(Không có giá trị nguyên của x)

*) \(y=-1\)(Không có giá trị nguyên của x)

*) \(y=0\Rightarrow x\in\left\{\pm2\right\}\)

*) \(y=1\Rightarrow x=-1\)

Vậy \(\left(x,y\right)\in\left\{\left(4,-4\right);\left(1,-3\right);\left(5,-3\right);\left(\pm2,0\right);\left(-1,1\right)\right\}\)

Khách vãng lai đã xóa
Cầm Dương
Xem chi tiết
Maru Coldboy
Xem chi tiết
Khương Vũ Phương Anh
Xem chi tiết
Văn Đức Anh Tuấn
Xem chi tiết
Bùi Thế Hào
1 tháng 12 2017 lúc 13:48

x2+2y2+2xy-y=3(y-1)

<=> x2+2xy+y2+y2-y=3(y-1)

<=> (x+y)2=3(y-1)-y(y-1)

<=> (x+y)2=(y-1)(3-y)

Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y

=> Để phương trình có nghiệm thì Vế phải \(\ge\)0

<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3

Y nguyên => y1=1; y2=2; y3=3

+/ y=1 => x=-y=-1

+/ y=2 => x=-1

+/ y=3 => x=-y=-3

Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)

Le Van Hung
Xem chi tiết
Truong thuy vy
17 tháng 3 2018 lúc 22:21

  2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0 

<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0 

<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8 

<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8 

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8 

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8 

<=> (x + y + 4)( 2x + y + 1) = -1 

=> 
{x + y + 4 = -1 
{2x + y + 1 = 1 
=> x = 2 và y = - 4 

{x + y + 4 = 1 
{2x + y + 1 = - 1 
=> x = - 2 và y = 2 

vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 13:21

a.

Với \(y=0\) không phải nghiệm

Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)

\(\Rightarrow3x+2=2x\left(x+y\right)+y\)

\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)

\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)

Thế vào pt đầu ...

Câu b chắc chắn đề sai

Lê Ng Hải Anh
Xem chi tiết
Nguyễn Hoàng Anh Phong
15 tháng 1 2019 lúc 20:34

Bài toán :

x^2 + 2*x*y + 2*y^2 + 3*y-4 = 0

Lời giải:

Tập xác định của phương trình

Rút gọn thừa số chung

Giải phương trình

Nghiệm được xác định dưới dạng hàm ẩn

#

Lê Ng Hải Anh
15 tháng 1 2019 lúc 20:38

Bn có thể có lời giải cụ thể cho bài này ko?

tth_new
8 tháng 2 2019 lúc 16:01

Tham khảo: Câu hỏi của Ngô Minh Tâm - Toán lớp 9 - Học toán với OnlineMath

phan thị minh anh
Xem chi tiết