Tìm số nguyên a, b sao cho:
2m-2n=256
Tìm m, n thuộc Z sao cho 2m - 2n = 256
tìm x,y nguyên dương thỏa mãn:
2m - 2n = 256
\(2^m-2^n=2^8\)
\(\Rightarrow2^n.\left(2^m-n-1\right)=2^8\)
\(\Rightarrow2^m-n-1=2^8-n\)
dễ thấy......với 8-n khác 0 => vế trái lẻ (do m lớn hơn n) mà vế phải chẵn => vô nghiệm
\(\Rightarrow8-n=0\Rightarrow n=8\Rightarrow m-n=1\Rightarrow m=9\)
Vậy \(n=8;m=9\)
bài 2 tìm các số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
a,
7 ⋮ n + 1 (đk n ≠ - 1)
n + 1 \(\in\) Ư(7) = {-7; - 1; 1; 7}
Lập bảng ta có:
n + 1 | -7 | - 1 | 1 | 7 |
n | -8 | -2 | 0 | 6 |
Theo bảng trên ta có:
n \(\in\) {-8; -2; 0; 6}
b, (2n + 5) ⋮ (n + 1) Đk n ≠ - 1
2n + 2 + 3 ⋮ n + 1
2.(n + 1) + 3 ⋮ n + 1
3 ⋮ n + 1
n + 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
n + 1 | - 3 | -1 | 1 | 3 |
n | -4 | -2 | 0 | 2 |
Theo bảng trên ta có:
n \(\in\) {-4; -2; 0; 2}
tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương
TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n
Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn
suy ra 3m là lẻ
suy ra m là lẻ và n có thể là bất kì số nào(n,m thuộc N)
TH2
3n-1/2m là dương suy ra 3n-1 chia hết cho 2m
Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn
suy ra 3n là lẻ
suy ra n là lẻ và m có thể là bất kì số nào(n,m thuộc N)
vậy n,m là lẻ
a,Tìm số nguyên n sao cho n-6 chia hết cho n-4
b, Tìm số nguyên n sao cho 2n-5 chia hết cho n-4
a/ theo đề bài ta có
n-4-2chia hết cho n-4
để n-6 chia hết cho n-4 thì 2 chia hết cho n-4
suy ra n-4 thuộc Ư2=[1;-1;2;-2] bạn tự tìm tiếp nhé
b;ui lười ứa ko làm tiếp
a) \(n-6⋮n-4\)
\(\Rightarrow n-4-2⋮n-4\)
\(\Rightarrow2⋮n-4\) ( vì \(n-4⋮n-4\) )
\(\Rightarrow n-4\in\text{Ư}_{\left(2\right)}=\text{ }\left\{1;-1;2;-2\right\}\)
lập bảng giá trị
\(n-4\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(n\) | \(5\) | \(3\) | \(6\) | \(2\) |
vậy..................
b) \(2n-5⋮n-4\)
ta có \(n-4⋮n-4\)
\(\Rightarrow2\left(n-4\right)⋮n-4\)
\(\Rightarrow2n-8⋮n-4\)
mà \(2n-5⋮n-4\)
\(\Rightarrow2n-5-2n+8⋮n-4\)
\(\Rightarrow3⋮n-4\)
\(\Rightarrow n-4\in\text{Ư}_{\left(3\right)}=\text{ }\left\{1;-1;3;-3\right\}\)
lập bảng giá trị
\(n-4\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(5\) | \(3\) | \(7\) | \(1\) |
vậy...............
a) Ta có n-6=n-4-2
=> 2 chia hết cho n-4
n nguyên => n-4 nguyên => n-4\(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
ta có bảng
n-4 | -2 | -1 | 1 | 2 |
n | 2 | 3 | 5 | 6 |
vậy n={2;3;5;6} thỏa mãn yêu cầu đề bài
a) Tìm số tự nhiên n sao cho 4n + 7 chia hết cho 2n + 1 b) Tìm số nguyên tố P sao cho P + 8 và P + 16 cũng là số nguyên tố
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
Tìm các số nguyên tố p,q và m,n nguyên dương sao cho p2m +q2n là số chính phương.
Giúp mình với! Mình cần gấp ạ!
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.
Đặt \(p^{2m}+q^{2n}=a^2\)\(\left(a\in Z\right)\)(1)
Nếu p,q lẻ suy ra \(p^{2m}\equiv q^{2n}\equiv1\)(mod 4)
\(\Rightarrow a^2\equiv2\)(mod 4), vô lý.
Suy ra trong p,q có 1 số = 2
Không mất tính tổng quát, giả sử p=2
\(\left(1\right)\Leftrightarrow2^{2m}+q^{2n}=a^2\)(2)
Nếu q khác 3 \(\Rightarrow\)q không chia hết cho 3\(\Rightarrow\)\(q^2\equiv1\)(mod 3)\(\Rightarrow\)\(q^{2n}\equiv1\)(mod 3)
Mà \(2^{2m}=4^m\equiv1^m\equiv1\)(mod 3)
Suy ra \(2^{2m}+q^{2n}\equiv2\)(mod 3)\(\Rightarrow\)vô lý.
Do đó q=3.
(2) trở thành \(2^{2m}+3^{2n}=a^2\)\(\Leftrightarrow\)\(3^{2n}=\left(a-2^m\right)\left(a+2^m\right)\)
\(\Rightarrow\)\(a-2^m\)và \(a+2^m\)là lũy thừa của 3.
Mà 2 số trên không cùng chia hết cho 3 (vì hiệu của chúng không chia hết cho 3)
\(\Rightarrow\)Có 1 số không chia hết cho 3\(\Rightarrow\)Có 1 số bằng 1 mà \(a-2^m< a+2^m\)\(\Rightarrow\hept{\begin{cases}a-2^m=1\\a+2^m=3^{2n}\end{cases}}\Rightarrow2\cdot2^m=3^{2n}-1\Rightarrow2^{m+1}=\left(3^n-1\right)\left(3^n+1\right)\)
\(\Rightarrow\)\(3^n-1\)và \(3^n+1\)đều là lũy thừa của 2.
Mà 2 số này không cùng chia hết cho 4 (do hiệu của chúng = 2 không chia hết cho 4).
\(\Rightarrow\)Có 1 số không chia hết cho 4.
Mà 2 số cùng tính chẵn lẻ\(\Rightarrow\)2 số cùng chẵn\(\Rightarrow\)Có 1 số = 2.
\(\Rightarrow\hept{\begin{cases}3^n-1=2\\3^n+1=2m\end{cases}}\)(do \(3^n-1< 3^n+1\))\(\Rightarrow\hept{\begin{cases}n=1\\m=2\end{cases}\Rightarrow\hept{\begin{cases}p=2\\q=3\end{cases}.}}\)
P/S: Bài dài viết lại mỏi quá.
Cho B = 2n+2/2n-4
a, Tìm n để a là p/ vs thuôc Z
b, tìm số nguyên n để b là số nguyên
c, B có phải là p/s tối giản ko, vì sao ?
a) a liên quan đến bài này ??
b) Để b là số nguyên thì 2n + 2 chia hết cho 2n - 4.
Ta có: 2n + 2 chia hết cho 2n - 4
=> (2n - 4) + 6 chia hết cho 2n - 4
=> 6 chia hết cho 2n - 4 hay 2n - 4 thuộc Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Để n nguyên thì 2n - 4 là chẵn => 2n - 4 thuộc {-6; -2; 2; 6}
=> n thuộc {-1; 1; 3; 5}
Tìm các số nguyên n sao cho các phân số sau có giá trị là số nguyên:
a) 12 3 n − 1
b) 2 n + 3 7