So sánh số hữu tỉ
a) \(\frac{35}{84}\)và \(\frac{8}{15}\)
b) \(-\frac{3}{5}\)và \(\frac{2}{-3}\)
So sánh các cặp số hữu tỉ sau:
a) \(\frac{2}{{ - 5}}\) và \(\frac{{ - 3}}{8}\) b) \( - 0,85\) và \(\frac{{ - 17}}{{20}}\);
c) \(\frac{{ - 137}}{{200}}\) và \(\frac{{37}}{{ - 25}}\) d) \( - 1\frac{3}{{10}}\) và \(-\left( {\frac{{ - 13}}{{ - 10}}} \right)\).
a) Ta có: \(\frac{2}{{ - 5}} = \frac{{ - 16}}{{40}}\) và \(\frac{{ - 3}}{8} = \frac{{ - 15}}{{40}}\)
Do \(\frac{{ - 16}}{{40}} < \frac{{ - 15}}{{40}}\,\, \Rightarrow \,\frac{2}{{ - 5}} < \frac{{ - 3}}{8}\).
b) Ta có: \( - 0,85 = \frac{{ - 85}}{{100}} = \frac{{ - 17}}{{20}}\). Vậy \( - 0,85\)=\(\frac{{ - 17}}{{20}}\).
c) Ta có: \(\frac{{37}}{{ - 25}} = \frac{{ - 296}}{{200}}\)
Do \(\frac{{ - 137}}{{200}} > \frac{{ - 296}}{{200}}\) nên \(\frac{{ - 137}}{{200}}\) > \(\frac{{37}}{{ - 25}}\) .
d) Ta có: \( - 1\frac{3}{{10}}=\frac{-13}{10}\) ;
\(-\left( {\frac{{ - 13}}{{ - 10}}} \right) = \frac{{-13}}{{10}}\).
Vậy \(- 1\frac{3}{{10}} =-(\frac{{-13}}{{-10}})\,\).
Ví dụ 3. So sánh các số hữu tỉ sau:
a)\(\frac{9}{10}\)và \(\frac{5}{42}\) b)\(\frac{-4}{27}\)và \(\frac{10}{-73}\)
Ví dụ 4. Sắp xếp các số hữu tỉ sau theo thứ tự tăng dần:
\(\frac{5}{-6};\frac{3}{4};\frac{-7}{12};\frac{5}{8}\)
Ví dụ 5. So sánh các số hữu tỉ :
\(x=\frac{-2}{15};y=\frac{-10}{-11}\)
Ví dụ 6. So sánh các số hữu tỉ sau:
\(\frac{-16}{27};\frac{-16}{29};\frac{-16}{27}\)
Ví dụ 3. So sánh các số hữu tỉ sau:
a)\(\frac{9}{10}\)và \(\frac{5}{42}\) b)\(\frac{-4}{27}\)và \(\frac{10}{-73}\)
Ví dụ 4. Sắp xếp các số hữu tỉ sau theo thứ tự tăng dần:
\(\frac{5}{-6};\frac{3}{4};\frac{-7}{12};\frac{5}{8}\)
Ví dụ 5. So sánh các số hữu tỉ :
\(x=\frac{-2}{15};y=\frac{-10}{-11}\)
Ví dụ 6. So sánh các số hữu tỉ sau:
\(\frac{-16}{27};\frac{-16}{29};\frac{-16}{27}\)
Vd 3:
a) 9/10 > 5/42 b) -4/27 < 10/-73
Vd 4:
5/-6: -7/12; 5/8; 3/4
Vd 5:
x<y
Vd 6:
-16/27= -16/27> -16/29
a)\(\frac{9}{10}\)và \(\frac{5}{42}\) b)\(\frac{-4}{27}\)và \(\frac{10}{-73}\)
Ví dụ 4. Sắp xếp các số hữu tỉ sau theo thứ tự tăng dần:
\(\frac{5}{-6};\frac{3}{4};\frac{-7}{12};\frac{5}{8}\)
Ví dụ 5. So sánh các số hữu tỉ :
\(x=\frac{-2}{15};y=\frac{-10}{-11}\)
Ví dụ 6. So sánh các số hữu tỉ sau:
\(\frac{-16}{27};\frac{-16}{29};\frac{-16}{27}\)
em chưa học bài này ạ
so sánh :
\(\frac{35}{84}\) và \(\frac{8}{15}\)
Ta có:\(\frac{35}{84}< \frac{35}{70}=\frac{1}{2}=\frac{7}{14}\)
Áp dụng tính chất :Nếu a<b thì \(\frac{a}{b}< \frac{a+c}{b+c}\)(nhân chéo mà chứng minh) ta có:
\(7< 14\Rightarrow\frac{7}{14}< \frac{7+1}{14+1}=\frac{8}{15}\)
\(\Rightarrow\frac{35}{84}< \frac{8}{15}\)
So sánh các cặp số hữu tỉ sau:
a) \(\frac{{ - 2}}{3}\) và \(\frac{1}{{200}}\);
b) \(\frac{{139}}{{138}}\) và \(\frac{{1375}}{{1376}}\);
c) \(\frac{{ - 11}}{{33}}\) và \(\frac{{25}}{{ - 76}}\).
a) Ta có \(\frac{{ - 2}}{3} < 0\) và \(\frac{1}{{200}} > 0\) nên \(\frac{{ - 2}}{3}\)<\(\frac{1}{{200}}\).
b) Ta có: \(\frac{{139}}{{138}} > 1\) và \(\frac{{1375}}{{1376}} < 1\) nên \(\frac{{139}}{{138}}\) > \(\frac{{1375}}{{1376}}\).
c) Ta có: \(\frac{{ - 11}}{{33}} = \frac{{ - 1}}{3}\) và \(\frac{{25}}{{ - 76}} = \frac{{ - 25}}{{76}} > \frac{{ - 25}}{{75}} = \frac{{ - 1}}{3}\,\,\,\, \Rightarrow \frac{{25}}{{ - 76}} > \frac{{ - 11}}{33}\).
a: -2/3<0<1/200
b: 139/138>1
1375/1376<1
=>139/138>1375/1376
c: -11/33=-1/3=-25/75<-25/76
So sánh A và B biết:
a) \(A=\frac{3}{83}+\frac{7}{84};B=\frac{7}{83}+\frac{3}{84}\)
b) \(A=\frac{10^7+5}{10^7-8};B=\frac{10^8+6}{10^8-7}\)
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
So sánh 2 số hữu tỉ sau:
\(\frac{84}{-83}và-\frac{337}{331}\)
giải thích rõ ràng ra xem nào, tại sao >? Tui cũng ko hiểu!
So sánh hai phân số:
a) \(\frac{{ - 3}}{8}\) và \(\frac{{ - 5}}{{24}}\) b) \(\frac{{ - 2}}{{ - 5}}\) và \(\frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}}\) và \(\frac{{ - 7}}{{20}}\) c) \(\frac{{ - 5}}{4}\) và \(\frac{{23}}{{ - 20}}\).
a) \(\frac{{ - 3}}{8} = \frac{{ - 3.3}}{{8.3}} = \frac{{ - 9}}{{24}}\)
Vì -9 < -5 nên \(\frac{{ - 9}}{{24}} < \frac{{ - 5}}{{24}}\)
Vậy \(\frac{{ - 3}}{8} < \frac{{ - 5}}{{24}}\).
b) Cách 1: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5}; \frac{3}{{ - 5}} = \frac{-3}{{5}}\)
Vì 2 > -3 nên \(\frac{2}{5} > \frac{-3}{{5}}\)
Vậy \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
Cách 2: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5} > 0\) mà \(\frac{3}{{ - 5}} < 0\)
\(\Rightarrow\) \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}} = \frac{3}{{10}} = \frac{{3.2}}{{10.2}} = \frac{6}{{20}}\)
\(\frac{{ - 7}}{{ - 20}} = \frac{7}{{20}}\)
Vì 6 < 7 nên \(\frac{6}{{20}} < \frac{7}{{20}}\) nên \(\frac{{ - 3}}{{ - 10}} < \frac{{ - 7}}{{ - 20}}\).
d) \(\frac{{ - 5}}{4} = \frac{{ - 5.5}}{{4.5}} = \frac{{ - 25}}{{20}}; \frac{{ 23}}{{-20}}=\frac{{-23}}{{20}} \)
Vì -25 < -23 nên \( \frac{{ - 25}}{{20}} < \frac{{-23}}{{20}} \)
Vậy \(\frac{{ - 5}}{4} < \frac{{23}}{{ - 20}}\).