Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Chí
Xem chi tiết
Lê Hoài Duyên
Xem chi tiết
bảo phạm
Xem chi tiết
Nguyễn Thanh Hằng
4 tháng 10 2019 lúc 19:04

Ta có :

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+3a^2b^2+2a^3b+2ab^3+b^4\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a^2+2ab+b^2\right)^2\right]\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)

Lương Gia Huy
Xem chi tiết
Phúc Anh Quân
Xem chi tiết
Huỳnh Bảo Ngọc
Xem chi tiết
ngonhuminh
19 tháng 2 2017 lúc 22:03

\(\left\{\begin{matrix}2x^2=a^2+b^2+c^2\left(1\right)\\a+b=c\left(2\right)\end{matrix}\right.\)

(1)=>\(4x^4=\left(a^4+b^4+c^4\right)+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]\)(3)

\(A=2\left(ac\right)^2+2\left(ab\right)^2+2\left(bc\right)^2=a^2\left(b^2+c^2\right)+c^2\left(a^2+b^2\right)+b^2\left(a^2+c^2\right)\) (*)

(2)=> \(\left\{\begin{matrix}a^2+b^2=c^2-2ab\\a^2+c^2=b^2+2ac\\b^2+c^2=a^2-2bc\\\end{matrix}\right.\)(4)

Thay (4) vào (*)

\(A=a^2\left(a^2+2bc\right)+c^2\left(c^2-2ab\right)+b^2\left(b^2+2ac\right)=a^4+2a^2bc+c^4-2abc^2+b^4+2ab^2c64\\ \)

\(A=\left(a^4+b^4+c^4\right)+2abc\left(a-c+b\right)=\left(a^4+b^4+c^4\right)+2abc.0=\left(a^4+b^4+c^4\right)\)(3)\(\Leftrightarrow4x^4=\left(a^4+b^4+c^4\right)+\left(a^4+b^4+c^4\right)=2\left(a^4+b^4+c^4\right)\)

\(\Rightarrow2x^4=\left(a^4+b^4+c^4\right)\) => dpcm

I lay my love on you
Xem chi tiết
Nguyễn Anh Kim Hân
27 tháng 6 2018 lúc 9:20

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\)(đpcm)

Bellion
10 tháng 9 2020 lúc 15:30

               Bài làm :

Ta có :

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\)

=> Điều phải chứng minh

Khách vãng lai đã xóa
Phúc Anh Quân
Xem chi tiết
Minh Đức
24 tháng 7 2016 lúc 9:36

\(a+b=c\Leftrightarrow\left(a+b\right)^4=c^4\)

\(\Leftrightarrow a^4+4a^3b+6a^2b^2+4ab^3+b^4=c^4\)

\(x^2=a^2+b^2+ab\Leftrightarrow x^4=\left(a^2+b^2+ab\right)^2\)

\(\Leftrightarrow x^4=a^4+b^4++a^2b^2+2a^2b^2+2ab^3+2a^3b\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\)

Minh Đức
24 tháng 7 2016 lúc 9:44

\(\left(x-2y\right)^6=x^6-6x^5\cdot2y+15x^4\cdot\left(2y\right)^2-20x^3\cdot\left(2y\right)^3+15x^2\cdot\left(2y\right)^4-6x\cdot\left(2y\right)^5+\left(2y\right)^6\)

\(=x^6-12x^5y+60x^4y^2-160x^3y^3+240x^2y^4-192xy^5+64y^6\)

Đặng Lê Đạt
24 tháng 7 2016 lúc 10:36

a+b=c⇔(a+b)4=c4

⇔a4+4a3b+6a2b2+4ab3+b4=c4

x2=a2+b2+ab⇔x4=(a2+b2+ab)2

⇔x4=a4+b4++a2b2+2a2b2+2ab3+2a3b

⇔2x4=2a4+2b4+6a2b2+4a3b+4ab3

⇔2x4=a4+b4+(a4+4a3b+6a2b2+4ab3+b4)

⇔2x4=a4+b4+c4

Phúc Anh Quân
Xem chi tiết