Cho (7x + 9y) : 17
chung minh ( 8x + 3y ) : 17
Cho ( 7x + 9y ) chia hết cho 17
Chứng minh ( 8x + 3y) chia hết cho 17
11.(7x+9y)+8x+3y=77x+99y+8x+3y=85x+102y chia hết cho 17
vì 7x+9y chia hết cho 17=> 11.(7y+9y) chia hết cho 17 mà 11.(7x+9y)+8x+3y=77x+99y+8x+3y=85x+102y chia hết cho 17 => 8x+3y chia hết cho 17
Cho đa thức sau:
A=16x^4-8x^3y+7x^2y^2-9y^4
B=-15x^4+3x^3y+3x^3y-5x^2y^2-6y^4
C=5x^3y+3x^2y^2+17y^4+1
Chứng minh rằng ít nhất 1 trong 3 đa thức có giá trị
BT13: Cho\(A=16x^4-8x^3y+7x^2y^2-9y^4\),\(B=-15x^4+3x^3y-5x^2y^2-6y^4\) và \(C=5x^3y+3x^2y^2+17y^4+1\)
a, Tính A+B-C
b, Tính A-C+B
\(a,A+B-C=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)+\left(-9y^4-6y^4-17y^4\right)-1\)
\(=x^4-10x^3y-x^2y^2-32y^4-1\)
\(b,A-C+B=A+B-C\) ( giống câu a )
\(a,\)
\(A+B+C\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-9y^4-6y^4-17y^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)-1\)
\(=x^4-32y^4-10x^3y-x^2y^2-1\)
\(b,\)
\(A-C+B=A+B-C=x^4-32y^4-10x^3y-x^2y^2-1\)
a: A+B-C
=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-C
=x^4-5x^3y+2x^2y^2-15y^4-5x^3y-3x^2y^2-17y^4-1
=x^4-10x^3y-x^2y^2-32y^4-1
b: A-C+B=A+B-C=x^4-10x^3y-x^2y^2-32y^4-1
Tìm x,y
2+3y/13=2+6y/17=2+9y/8x
Áp dụng dãy tỉ số bằng nhau:
\(\frac{2+3y}{13}=\frac{2+6y}{17}=\frac{2\left(2+3y\right)-\left(2+6y\right)}{2.13-17}=\frac{2}{9}\)
=> \(2+3y=\frac{26}{9}\)=> \(y=\frac{8}{27}\)
\(\frac{2+9y}{8x}=\frac{2+3y}{13}=\frac{2}{9}\)
=> \(9\left(2+9y\right)=2.8x\)
=> \(16x=42\)
=> \(x=\frac{21}{8}\)
thử lại thỏa mãn
Vậy:...
Cho đa thức :
A = 16x^4 -8x^3y +7x^2y^2 -9y^4
B = -15x^4 +3x^3y -5x^2y^2 -6y^4
C = 5x^3y +3x^2y^2 +17y^4 +1
CMR : Ít nhất một trong Ba đa thức này phải có một đa thức có giá trị dương với mọi x,y
Giả sử 3 đa thức trên cùng nhận giá trị âm với mọi x, y.
Ta có: \(A.B.C\)\(=\left(16x^4-8x^3y+7x^2y^2-9y^4\right)+\left(-15x^4+3x^3y-5x^2y^2-6y^4\right)+\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4+5x^3y+3x^2y^2+17y^4+1\)
\(=\left(16x^4-15x^4\right)-\left(8x^3y-3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2+3x^2y^2\right)-\left(9y^4+6y^4-17y^4\right)+1\)
\(=x^4-0+5x^2y^2-2y^4+1\)
\(=x^4+5x^2y^2-2y^4+1\)
Ta thấy: \(x^4\ge0\) \(\forall x\) \(;\) \(x^2y^2\ge0\)\(\forall x,y\) \(;\) \(y^4\ge0\)\(\forall y\)
\(\Rightarrow\)\(\left(x^4+5x^2y^2-2y^4+1\right)\ge1\) \(\forall x,y\)
\(\Rightarrow\)\(A.B.C\)nhận giá trị dương
\(\Rightarrow\)3 đa thức trên không thể cùng nhận giá trị âm với mọi x, y
\(\Rightarrow\)\(dpcm\)
cho biểu thức A = (x-3y)(x^2-2xy+9y^2)+3y(x+3y)(x-3y)-x(3xy+7x-7)
a.chứng minh rằng biểu thức a không phụ thuộc vào giá trị của biến y
b.tính giá trị của biểu thức a khi x =-1
Lời giải:
Sửa đề đoạn $x-3y$ thành $x+3y$
$A=x^3+(3y)^3+3y(x^2-9y^2)-(3x^2y+7x^2-7x)$
$=x^3+27y^3+3x^2y-27y^3-3x^2y-7x^2+7x$
$=x^3-7x^2+7x$ không phụ thuộc vào giá trị của biến $y$ (đpcm).
b.
Khi $x=-1$ thì:
$A=(-1)^3-7(-1)^2+7(-1)=-1-7-7=-15$
cho 3a+2b chia hết cho 17chung mình rằng 9a+6b chia hết cho 17
ta có
3a+2b chia hết cho 17
=3x (3a+2b) chia hết cho 17
=> 9a+6b chia hết cho 17
tk mình nha
chắc chắn 100% đó
a)Cho 8x+3y chia hết 11
Chứng minh x-y chia hết cho 11
b) Cho 4x+3y chia hết cho 13
Chứng minh 7x+2y chia hết cho 13
a) \(8x+3y⋮11\Leftrightarrow7\left(8x+3y\right)⋮11\)(vì \(\left(7,11\right)=1\))
\(\Leftrightarrow\left[\left(56x-5.11x\right)+\left(21y-2.11y\right)\right]⋮11\)
\(\Leftrightarrow\left(x-y\right)⋮11\).
b) \(\left(4x+3y\right)⋮13\Leftrightarrow5\left(4x+3y\right)⋮13\)(vì \(\left(5,13\right)=1\))
\(\Leftrightarrow\left[\left(20x-13x\right)+\left(15y-13y\right)\right]⋮13\)
\(\Leftrightarrow\left(7x+2y\right)⋮13\).
Chứng minh rằng nếu 5x+3y chia hết cho 17 thì 8x-2y chia hết cho 17
Ta có 5x + 3y \(⋮\)17
=> 5(5x + 3y) \(⋮\)17
=> 25x + 15y \(⋮\)17
=> 17(x + y) + 8x - 2y \(⋮\)17
Nhận thấy 17(x + y) \(⋮\)17
=> 8x - 2y \(⋮\)17 (đpcm)