Tìm các số a,b,c sao cho :2a=3b,5b=7c và 3a + 5c-7b = 30
Tìm các số a, b, c sao cho:
2a = 3b, 5b = 7c và 3a + 5c – 7b = 30
tìm các số a,b,c sao cho 2a=3b;5b=7c và 3a + 5c -7b = 30
\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{3.7}=\frac{b}{2.7}\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right)\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{7.2}=\frac{c}{5.2}\Rightarrow\frac{b}{14}=\frac{c}{10}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
=> a = 21k
b = 14k
c = 10k
Thay vào biểu thức 3a + 5c - 7b = 30 , ta có :
3a + 5c - 7b = 30
=> 3.21k + 5.10k - 7.14k = 30
=> 63k + 50k - 98k = 30
=> (63 + 50 - 98)k = 30
=> 15k = 30
=> k = 2
\(\Rightarrow\hept{\begin{cases}a=21k=21.2=42\\b=14k=14.2=28\\c=10k=10.2=20\end{cases}}\)
Tìm 3 số a,b,c sao cho 2a=3b; 5b=7c và 3a+5c-7b=30
Ta có : \(2a=3b\) \(\Rightarrow\) \(\frac{a}{3}=\frac{b}{2}\) \(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\) \(\Rightarrow\) \(\frac{b}{7}=\frac{c}{5}\) \(\Rightarrow\) \(\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
( Tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\) \(a=42;b=28;c=20\)
Mục tiêu -1000 sp mong giúp đỡ
Đừng khóa nick nha olm
tao xin loi vi tao khong hoc lop 7
Tìm các số a,b,c biết 2a=3b ; 5b=7c và 3a-7b+5c=30
Ta có: 2a=3b
nên \(\dfrac{a}{3}=\dfrac{b}{2}\)
hay \(\dfrac{a}{21}=\dfrac{b}{14}\left(1\right)\)
Ta có: 5b=7c
nên \(\dfrac{b}{7}=\dfrac{c}{5}\)
hay \(\dfrac{b}{14}=\dfrac{c}{10}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
hay \(\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{30}{15}=2\)
Do đó: a=42; b=28; c=20
Tìm các số a,b,c biết 2a = 3b ; 5b = 7c và 3a + 5c + 7b = 30
Tìm các số a,b,c biết rằng 2a=3b;5b=7c và 3a+5c-7b=30
Tìm các số a , b ,c sao cho :
2a = 3b, 5b = 7c và 3a +5c - 7b = 30
Khó quá jup #Rau vs
Ta có :
\(\begin{cases}2a=3b\\5b=7c\end{cases}\)
\(\Rightarrow\begin{cases}\frac{a}{3}=\frac{b}{2}\\\frac{b}{7}=\frac{c}{5}\end{cases}\)
\(\Rightarrow\begin{cases}\frac{a}{21}=\frac{b}{14}\\\frac{b}{14}=\frac{c}{10}\end{cases}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{62}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63-50+98}=\frac{30}{111}=\frac{10}{37}\)
Giải ra tìm được a ; b ; c
Tìm a, b, c sao cho: 2a = 3b; 5b = 7c; 3a + 5c = 7b + 30
Bài 3 : Tìm các số a, b, c biết 2a = 3b , 5b = 7c và 3a - 7b + 5c = -30
Ta có: 2a=3b;5b=7c\(\Leftrightarrow\frac{a}{3}=\frac{b}{2},\frac{b}{7}=\frac{c}{5}\Leftrightarrow\frac{1}{7}\times\frac{a}{3}=\frac{1}{7}\times\frac{b}{2},\frac{b}{7}\times\frac{1}{2}=\frac{c}{5}\times\frac{1}{2}\)
<=> \(\frac{a}{21}=\frac{b}{14},\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
<=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\) và 3a - 7b + 5c = - 30
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{-30}{15}=-2\)
Do đó: \(\frac{a}{21}=-2\Rightarrow a=-42\)
\(\frac{b}{14}=-2\Rightarrow-28\)
\(\frac{c}{10}=-2\Rightarrow c=-20\)
Vậy 3 số a,b,c lần lượt là -42;-28 và -20.
tìm các số a,b,c biết rằng
2a=3b ; 5b=7c và 3a+5c-7b=30
Ta có : 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)
5b = 7c => \(\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
+) \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)
+) \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
=> \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có : \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
Từ đó suy ra a = 2.21 = 42,b = 2.14 = 28,c = 2.10 = 20
Ta có:\(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{14}=\frac{c}{10}\)
Suy ra:\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Đặt\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
\(\Rightarrow\hept{\begin{cases}a=21k\\b=14k\\c=10k\end{cases}}\)
Mà\(3a+5c-7b=30\)
\(\Rightarrow3.21k+5.10k-7.14k=30\)
\(\Leftrightarrow63k+50k-98k=30\)
\(\Leftrightarrow15k=30\)
\(\Leftrightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}a=2.21=42\\b=2.14=28\\c=2.10=20\end{cases}}\)
Vậy\(\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}\)
Linz