tìm nghiệm củả:4x^6-3x^2+3
x^3-4x^2+x+6= 0 tìm nghiệm của đa thức
\(x^3-4x^2+x+6=0\)
\(\Leftrightarrow x^3-5x^2+6x+x^2-5x+6=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)+\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x-2=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=2\\x=3\end{array}\right.\)
Tìm nghiệm của đa thức sau :
3x3 + 4x2 + 2x + 1
\(3x^3+4x^2+2x+1=0\)
\(\Leftrightarrow\left(3x^3+x^2+x\right)+\left(3x^2+x+1\right)=0\)
\(\Leftrightarrow x\left(3x^2+x+1\right)+1\left(3x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x+1\right)=0\)
Ta có:\(3x^2+x+1=3\left(x^2+x.\frac{1}{3}+\frac{1}{3}\right)\)
\(=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{1}{3}\right)\)
\(=3\left[\left(x+\frac{1}{6}\right)^2+\frac{11}{36}\right]\ge3.\frac{11}{36}=\frac{11}{12}>0\forall x\)
Do đó x + 1 = 0 tức là x = -1
\(3x^3+3x^2+x^2+x+x+1=0\)
\(3x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)=0\)
\(\left(x+1\right).\left(3x^2+x+1\right)=0\)
+)\(3x^2+x+1=0\Leftrightarrow3.\left(x^2+x+\frac{1}{3}\right)=0\Leftrightarrow3.\left(x+\frac{1}{6}\right)^2+\frac{11}{12}=0\left(loai\right)\)
+) x+1=0 <=> x=-1
Tìm nghiệm của đa thức sau: M(x)=(6+4x)(-x+2)
Lời giải:
$M(x)=(6+4x)(-x+2)=0$
\(\Leftrightarrow \left[\begin{matrix} 6+4x=0\\ -x+2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức $M(x)$ là $x=\frac{-3}{2}$ và $x=2$
Câu hỏi : Tìm 1 nghiệm của mỗi đa thức sau:
b) g(x) = 11x^3+ 5x^2+ 4x + 10
c) h(x) = -17x^3+ 8x^2 - 3x + 12
a)g(x)=0=>11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
=>10(x+1)(x2−x+1)+x2(x+1)+4x(x+1)=0
=>(x+1)[(10(x2−x+1)+x2+4x]=0
=>(x+1)(11x2−6x+10)=0
=>(x+1)[(9x2−2.3x+1)+2x2+9]=0
=>(x+1)[(3x−1)2+2x2+9]=0
=>x+1=0
=>x=-1
Vậy x=-1
Tìm nghiệm của mỗi đa thức sau :
a) f(x) = x^3 - x^2 + x -1
b) g(x) = 11x^3 + 5x^2 + 4x + 10
c) h(x) = -17x^3 + 8x^2 - 3x +12
a) Thay đa thức này bằng 0, ta được:
f(x) = x^3 - x^2 + x - 1 = 0
=> f(x) = x . x2 - x . x + x - 1 = 0
=> f(x) = x. (x2 - x + x) = 0 + 1 = 1
=> f(x) = x . x2 = 1
=> x = 1 và x2 = 1
=> x = 1
Vậy nghiệm của đa thức là x = 1
(m-2)x\(^4\) -3x\(^2\)+m+2=0
tìm m để phương trình có 1 nghiệm, 2 nghiệm, 3 nghiệm, 4 nghiệm, vô nghiệm.
Hướng dẫn:
\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)
TH1: m - 2 = 0 <=> m = 2
khi đó phương trình trở thành: \(-3x^2+4=0\)
<=> \(x=\pm\frac{2}{\sqrt{3}}\)
TH2: m khác 2
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)
có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)
+) Phương trình (1) vô nghiệm <=> phương trình (2) vô nghiệm
<=> \(\Delta\)<0 ( tự giải ra)
+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không )
+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương
Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)
<=> m = - 2
Thay vào phương trình (2) : \(-4t^2-3.t=0\)
<=> \(t\left(4t+3\right)=0\)
<=> t = 0
=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm
+) Phương trình (1) có 2 nghiệm <=>phuowng trình (2) có 2 nghiệm trái dấu
<=> m + 2 < 0 <=> m < - 2
Kết hợp với TH1 nữa nhé!
+) Phương trình (1) có 4 nghiệm
<=> phương trình 2 có 2 nghiệm dương
<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)
Tìm nghiệm biết : \(4x^2+x-3\)
4x2 + x - 3 = 0
<=> 4x2 + 4x - 3x - 3 = 0
<=> 4(x + 1) - 3(x + 1) = 0
<=> (x + 1)(4x - 3) = 0
<=> \(\orbr{\begin{cases}x+1=0\\4x-3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-1\\x=\frac{3}{4}\end{cases}}\)
Vậy: x = -1; x = 3/4 là nghiệm của đa thức 4x2 + x - 3
\(4x^2+x-3\)
\(4xx+x-3\)
\(x\left(4x+1\right)-3\)
Tìm nghiệm nguyên của các phương trình:
a, 6xy+2x-3y=6
b, 4x^2+4x+y^2-12=0
M.n giúp mk nha
tìm nghiệm của đa thức:
3xX(x+1)^2-3x^2(x+2)-4x^2-5x+6\(x^2-5x+6=0\)
\(x^2-2x-3x+6=0\)
\(x\left(x-2\right)-3\left(x-2\right)=0\)
\(\left(x-3\right)\left(x-2\right)=0\)
\(x-3=0\)\(x=3\)
\(x-2=0\)\(x=2\)
Vậy x = 3 và x = 2 là nghiệm của đa thức trên. (cái đa thức kia bạn ghi rõ lại hơn đi)