Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minhmmmm96
Xem chi tiết
Trịnh Xuân Ngọc
25 tháng 3 2020 lúc 21:50

Bài 1: 

Ta có |x-8| > 0 với mọi x

=>A=37-|x-8| > 37 với mọi x

Vậy GTLN của A=37 với x-8=0 =>x=8

Bài 2 tương tự nhé

Học tốt :))

Khách vãng lai đã xóa
trung
Xem chi tiết
Trúc Giang
23 tháng 6 2021 lúc 19:40

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 19:41

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Tô Thái Sơn
Xem chi tiết
Hứa Minh Tuấn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:46

Đặt \(x+2=t\ne0\Rightarrow x+1=t-1\)

\(A=\dfrac{x+1}{\left(x+2\right)^2}=\dfrac{t-1}{t^2}=-\dfrac{1}{t^2}+\dfrac{1}{t}=-\left(\dfrac{1}{t}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(A_{max}=\dfrac{1}{4}\) khi \(t=2\) hay \(x=0\)

ThanhSungWOO
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 10 2021 lúc 22:23

\(B=\left(x-1\right)^2-4\ge4\\ B_{min}=4\Leftrightarrow x=1\)

Lấp La Lấp Lánh
29 tháng 10 2021 lúc 22:24

\(B=x^2-2x-3=\left(x^2-2x+1\right)-4\)

\(=\left(x-1\right)^2-4\ge-4\)

\(minB=-4\Leftrightarrow x=1\)

Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 22:25

\(=\left(x-1\right)^2-4\ge-4\forall x\)

Dấu '=' xảy ra khi x=1

Phạm Huy Hoàng
Xem chi tiết
Nguyễn Phan Thu Ngân
Xem chi tiết
HT2k02
9 tháng 4 2021 lúc 21:11

\(B=\dfrac{2x^2-12x+25}{x^2-6x+12}=\dfrac{2\left(x^2-6x+12\right)+1}{x^2-6x+12}=2+\dfrac{1}{x^2-6x+9+4}=2+\dfrac{1}{\left(x-3\right)^2+4}\le2+\dfrac{1}{4}=\dfrac{9}{4}\)

Không có min nha bạn . Chỉ có max thôi 

Dấu = xảy ra khi x=3

Nguyễn anh quân
Xem chi tiết
☆MĭηɦღAηɦ❄
16 tháng 3 2020 lúc 17:34

\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\)

Ta thấy \(5x^2\ge0\forall x\)

\(\Rightarrow5x^2+5\ge5\)

\(\Rightarrow B\ge5\)

Dấu "=" xảy ra khi \(x=0\)

...

Khách vãng lai đã xóa
Nguyễn Linh Chi
16 tháng 3 2020 lúc 17:33

\(B=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\ge5\)

Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0

GTNN của B là 5 khi x = 0

Khách vãng lai đã xóa

B=(2x-1)²+(x+2)²

=4x2 -4x+x2+4+4x

=5x2+5

xét 5x2 ta thấy : 5xlớn hơn hoặc bằng 0 (với mọi x thuộc R)

=>5x2+5 lớn hơn hoặc bằng 5

=>B lớn hơn hoặc bằng 5

Gía trị nhỏ nhất của B đạt được khi :

B=5 <=> x=0

HOK TỐT NHÉ

Khách vãng lai đã xóa
9A Lớp
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 14:24

Bổ sung điều kiện: \(x,y>0\)

\(A=\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x^2+y^2}{9xy}+\dfrac{xy}{x^2+y^2}\right)\)

Áp dụng BĐT cosi:

\(A\ge\dfrac{8}{9}\cdot2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{xy\left(x^2+y^2\right)}{9xy\left(x^2+y^2\right)}}=\dfrac{16}{9}+\dfrac{2}{3}=\dfrac{22}{9}\)

Vậy \(A_{min}=\dfrac{22}{9}\Leftrightarrow x=y\)