Tính diện tích hình chũ nhật ABCD, biết rằng BD=8cm, góc ABD=15 độ.
cho hình chữ nhật ABCD có BD=8cm góc ABD=15 độ tính diện tích hình chữ nhật
cho hình thang ABCD có AB//CD biết BD= 7cm , góc ABD = 45 độ. Tính diện tích hình thang ABCD
Gọi O là giao điểm của AC, BD, Kẻ BF ⊥ CD, Kẻ BE // AC
Xét ΔABD và ΔBAC có:
AD=BC (htc ABCD)
AB chung
góc DAB = góc ABC (htc ABCD)
⇒ △ABD=△BAC (c-g-c)
⇒ góc BAC = góc BAD = 45 độ
⇒ ΔOAB vuông cân tại O hay AC ⊥ BD ⇒ BE ⊥ BD ⇒ ΔBED vuông ở B
Tứ giác ABEC: BE // AC, AB // CE nên là hbh
⇒ BE = AC = BD = 7cm, AB = CE
ΔABD và ΔBCE có đường cao ứng với 2 đáy AB, CE bằng nhau cùng bằng BF, lại có AB = CE nên SABD = SBCE
⇒ SABCD = SBDE = 7.7/2 =
Cho hình thang cân ABCD có AB // CD biết BD = 7 cm, góc ABD = 45 độ. Tính diện tích hình thang ABCD
Gọi O là giao điểm của AC, BD, Kẻ BF ⊥ CD, Kẻ BE // AC
Xét ΔABD và ΔBAC có:
AD=BC (htc ABCD)
AB chung
góc DAB = góc ABC (htc ABCD)
⇒ △ABD=△BAC (c-g-c)
⇒ góc BAC = góc BAD = 45 độ
⇒ ΔOAB vuông cân tại O hay AC ⊥ BD ⇒ BE ⊥ BD ⇒ ΔBED vuông ở B
Tứ giác ABEC: BE // AC, AB // CE nên là hbh
⇒ BE = AC = BD = 7cm, AB = CE
ΔABD và ΔBCE có đường cao ứng với 2 đáy AB, CE bằng nhau cùng bằng BF, lại có AB = CE nên SABD = SBCE
⇒ SABCD = SBDE = \(\dfrac{BD.BE}{2}\) = \(\dfrac{7.7}{2}\) = \(\dfrac{49}{2}\)= 24,5 cm2
Vậy ...
1)Tính diện tích hình chữ nhật ABCD, biết BD=4cm, góc ABD =75 độ.
2)Cho tam giác ABC có BC=10cm, các đường trung tuyến BD và CE có độ dài theo thứ tự bằng 9cm và 12 cm . Tính diện tích tam giác ABC
cho hình chữ nhật ABCD có M là trung điểm của BC, AM cắt BD tại N. Biết diện tích của hình chũ nhật ABCd là 60 cm2. Tính diện tích của tam giác AND
me học qua phần này gùi nên ko nhớ
sorry
Cho hình chữ nhật ABCD có đường chéo BD=17cm, góc ABD=75 độ. Diện tích hình chữ nhật ABCD là bao nhiêu cm vuông?
Bài này mà của lớp 9 thì dễ, lớp 8 thì làm thế này nhé.
Trên AD lấy điểm E sao cho góc ABE=60 độ.
Đặt AB = x (x>0)
Tam giác ABE vuông có góc ABE = 60 độ nên BE = 2 AB = 2x.
Áp dụng định lí Pi-ta-go => AE= \(\sqrt{3}\)x
Tam giác BED cân tại E => BE = ED = 2x.
=> AD = AE + ED =\(\sqrt{3}\)x +2x =x(\(\sqrt{3}\) +2)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABD
BD2 = AB2 + AD2 <=> 172 = x2 +(\(\sqrt{3}\)+2)2 x2 => x=\(\frac{17}{\sqrt{8+4\sqrt{3}}}\)
=> AB, AD => Diện tích của hcn ABCD.
thế còn nếu với góc ABD = 15 độ thì làm sao hả bạn?
cho hình chữ nhật ABCD có AB=8cm AD=6cm. kẻ đường cao AH của tam giác ABD
a, chứng minh rằng tam giác ABD đồng dạng với tam giác HBA.
b, tính độ dài đoạn thẳng BD, HB.
c, đường thẳng AH cắt DC tại I và cắt đường thẳng BC tại K. tính tỉ số diện tích của hai tam giác ABH và BKH
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
cho hình chữ nhật ABCD có AB=8cm AD=6cm. kẻ đường cao AH của tam giác ABD
a, chứng minh rằng tam giác ABD đồng dạng với tam giác HBA.
b, tính độ dài đoạn thẳng BD, HB.
c, đường thẳng AH cắt DC tại I và cắt đường thẳng BC tại K. tính tỉ số diện tích của hai tam giác ABH và BKH
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
cho hình thang ABCD (AB// CD) , AB = 4, BD = 6, CD = 9. I là giao điểm của AC và BD
a) C/m: IA.IB = IC.ID
b) C/m: tam giác ABD đồng dạng tam giác BDC
c) Diện tích tam giác ABD = 16. Tính diện tích hình thang ABCD
d) Tính góc B của hình thang ABCD biết góc ADB = 42 độ