E = 1 x 2 + 2 x 3 + 3 x 4 + ... + 2000 x 2001
Tính giá trị biểu thức
Tính giá trị của các biểu thức
A = 1+2+3+ ... +2018
B = 1 + 3 + 5 + ... + 2017
C = 2 + 4 + 6 + ... + 2018
D = 1 + 4 + 7 + ... + 2005
E = 1 x 2 + 2 x 3 + 3 x 4 + ... + 2000 x 2001
A = 1 + 2 + 3 + ... + 2018
= ( 1 + 2018 ) + ( 2 + 2017) + ... + ( 1009 + 1010 )
= 2019 + 2019 + ... + 2019 ( có 1009 số 2019 )
= 2019 x 1009 = 2037171
B = 1 + 3 + 5 + ... + 2017
= ( 1 + 2017 ) + ( 3 + 2015 ) + ... + ( 1007 + 1010) + 1009
= 2018 + 2018 + ... + 2018 + 1009 (có 504 số 2018)
= 2018 x 504 + 1009 = 1018081
Còn lại làm giống ý trên .
Tìm giá trị nhỏ nhất của biểu thức sau:A=2+3×√x^2+1 B=√x+8 -7 Tìm giá trị lớn nhất của biểu thức sau: E=3-√x+6 F= 4/3+√2-x
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
a) 5x/2x+2 +1=-6/x+1
b) x2-6/x = x+3/2
c) Tìm x sao cho giá trị của biểu thức 3x-2/4 không nhỏ hơn giá trị của biểu thức 3x+3/6
d) Tìm x sao cho giá trị của biểu thức (x+1)2 không nhỏ hơn giá trị của biểu thức (x-1)2
e) Tìm x sao cho giá trị của biểu thức 2x-3/35 + x(x-2)/7 không lớn hơn giá trị của biểu thức x^2/7-2x-3/5
f) Tìm x sao cho giá trị của biểu thức 3x-2/4 không lớn hơn giá trị của biểu thức 3x+3/6
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
1) a) Tính (3/4-81)(3^2/5-81)(3^3/6-81)..(3^2000/2003-81)
b) Tính giá trị của biểu thức: 6x^2+5x-2 tại x thõa mãn |x-2|=1
2) Tìm giá trị nguyên lớn nhất của biểu thức MN=15-x/5-x ?
Bài 1:
a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
e) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x2 + y2 , x3 + y3 , (x2 - y2)2 , x6 + y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x2 + y2, x3 - y3, (x2- y2)2, x6 - y6
h) Cho a + b + c = 0, a2+ b2 + c2 = 1. Tính giá trị của biểu thức H = a4 + b4 + c4
i) Cho a + b = a3 + b3 =1. Chứng minh: a2 + b2 = a4+ b4
j) Cho x + y = a + b; x2 + y2 = a2 + b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a2 + b2 = 1; c2 + d2 = 1; ac + bd = 0. CMR: ab + cd = 0
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
a,\(a+b+c=9\)
\(\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)
Vì \(a^2+b^2+c^2=141\)
\(\Rightarrow2ab+2bc+2ca=-60\)
\(\Rightarrow2\left(ab+bc+ca\right)=-60\)
\(\Rightarrow ab+bc+ca=-30\)
Vậy ...
b,\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
\(\Rightarrow x^3+3xy.1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
Vậy...
Tìm x để các biểu thức sau có giá trị nhỏ nhất - giá trị nhỏ nhất là bao nhiêu?
'' | '' Là giá trị tuyệt đối
a) A= |x| + 1/2
b) B= |x-1/2| +3
c) C= |x-2/3| -4
d) D= |x-2/3| -4+1/4
e) E= |x-5| + |x-4|
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
Cho số thực x thỏa mãn x+1/x=3. Tính giá trị biểu thức E=x^2/x^4+1
Lời giải:
$x+\frac{1}{x}=3\Rightarrow (x+\frac{1}{x})^2=9$
$\Leftrightarrow x^2+2+\frac{1}{x^2}=9$
$\Leftrightarrow x^2+\frac{1}{x^2}=7$
$\Leftrightarrow \frac{x^4+1}{x^2}=7$
$\Leftrightarrow E=\frac{x^2}{x^4+1}=\frac{1}{7}$
Cho biểu thức: A=( x+2/ 2-x - 2-x/x+2 - 4x²/x²-4) : ( 2/ 2-x + x+3/2x-x²)
a) Tìm điều kiện xác định của biểu thức A.
b) Chứng minh rằng A= 4x²/ 3x+3
c) Tính giá trị của A khi x= 1/2
d) Với giá trị nào của x thì A=-1.
e) Tìm giá trị của x để A
Bạn nên viết biểu thức A bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu biểu thức của bạn hơn.