Bài 1 chuengs minh các đẳng thức sau
a, (x+y)(x^3-x^2-y+xy^2+y^3)=X^4+y^4
Chứng minh các đẳng thức sau:
a) (x-1) (x^2 + x+ 1) = x^3 -1
b) (x^3+x^2y + xy^2 + y^3) (x-y) = x^4 - y^4
c) (x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2 yz + 2zx
a) \(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1=VP\)
b) \(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4=VP\)
c) \(VT=\left(x+y+z\right)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx=VP\)
Chúc bạn học tốt.
1 khai triển các biểu thức sau
a, ( x + y ) ^2
b, ( x - 2 y ) ^2
c, ( xy^2 + 1 ) ( xy^2 - 1 )
d, ( x+ y ) ^2 ( x - y )^2
2 viết các biểu thức dưới dạng bình phương của 1 tổng hoặc hiệu
a, x^2 + 4x + 4
b, 9x^2 - 12x +4
c, x^2/4 + x + 1
d, ( x + y )^2 - 4 ( x + y ) +4
giúp mik vs
\(1,\\ a,=x^2+2xy+y^2\\ b,=x^2-4xy+4y^2\\ c,=x^2y^4-1\\ d,=\left[\left(x-y\right)\left(x+y\right)\right]^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\\ 2,\\ a,=\left(x+2\right)^2\\ b,=\left(3x-2\right)^2\\ c,=\left(\dfrac{x}{2}+1\right)^2\\ d,=\left(x+y-2\right)^2\)
Bài 1 em dùng HĐT nha
Bài 2:
a. x2 + 4x + 4
= x2 + 2.2.x + 22
= (x + 2)2
b. 9x2 - 12x + 4
= (3x)2 - 3x.2.2 + 22
= (3x - 2)2
c. \(\dfrac{x^2}{4}+x+1\)
= \(\left(\dfrac{x}{2}\right)^2+2.\dfrac{x}{2}.1+1^2\)
= \(\left(\dfrac{x}{2}+1\right)^2\)
chứng minh các đẳng thức sau
a) (x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)= x^5-y^5
b) (x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)= x^5+y^5
c) (a+b)(a^3-a^2b+ab^2-b^3)=a^4-b^4
chứng minh các đẳng thức sau:
a)(x+y)(x^3-x^2y+xy^2+y^3)=x^4+y^4
b)(x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
c)(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
d)(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)=x^5-y^5
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
Câu1:Chứng minh đẳng thức
a) (x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
b) (x+y)(x+y+x)-2(x+1)(y+1)+2=x^2+y^2
c) Cho ab=1. Chứng minh đẳng thức a(b+1)+b(a+1)=(a+1)(b+1)
Câu 2: Tìm x biết (x-3)(x+x^2)+2(x-5)(x+1)-x^3=12
Câu 1:
a) Ta có: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)
c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ab+b\)
\(=a+b+2ab\)(1)
Thay ab=1 vào biểu thức (1), ta được:
a+b+2(*)
Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)
Thay ab=1 vào biểu thức (2), ta được:
1+a+b+1=a+b+2(**)
Từ (*) và (**) ta được VT=VP(đpcm)
Câu 2:
Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)
\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)
\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)
\(\Leftrightarrow-11x-22=0\)
\(\Leftrightarrow-11x=22\)
hay x=-2
Vậy: x=-2
Bài 3 : Chứng minh các đẳng thức sau
a) ( x+y)( x3- x2y + xy2 + y3 ) = x4 + y4
b ) ( x-y ) (x3 + x2y + xy2 + y3 ) = x4 - y4
c) ( x + y ) (x4 - x3y + x2y2 - xy3 + y4 ) = x5 + y5
d) ( x-y ) ( x4 + x3y + x2y2 + xy3 + y4 ) = x5 - y5
chứng minh các đẳng thức
( x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\) ( đpcm )
bài 1 chứng minh các đẳng thức sau
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{1}{x-y}\)
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
Chứng minh đẳng thức sau :
a)(x+y).(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5\)