\(1,\\ a,=x^2+2xy+y^2\\ b,=x^2-4xy+4y^2\\ c,=x^2y^4-1\\ d,=\left[\left(x-y\right)\left(x+y\right)\right]^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\\ 2,\\ a,=\left(x+2\right)^2\\ b,=\left(3x-2\right)^2\\ c,=\left(\dfrac{x}{2}+1\right)^2\\ d,=\left(x+y-2\right)^2\)
Bài 1 em dùng HĐT nha
Bài 2:
a. x2 + 4x + 4
= x2 + 2.2.x + 22
= (x + 2)2
b. 9x2 - 12x + 4
= (3x)2 - 3x.2.2 + 22
= (3x - 2)2
c. \(\dfrac{x^2}{4}+x+1\)
= \(\left(\dfrac{x}{2}\right)^2+2.\dfrac{x}{2}.1+1^2\)
= \(\left(\dfrac{x}{2}+1\right)^2\)