CHO TAM GIAC ABC CAN TAI A VA DUONG CAO AD CO H LA TRUC TAM .TINH AD BIET AH=14CM, HB=HC=30CM
Cho tam giac ABC can tai A co truc tam H nam ben trong tam giac. Biet HA = 3,094, HB = 6,630. Tinh do dai duong cao AD cua tam giac ABC.
cho tam giac ABC vuong tai A duong cao AH tinh chu vi cua tam giac ABC biet AH=14cm HB/HC=1/4
Cho tam giac ABC can tai A va co goc A la 50°. Nua duong tron duong kinh AC cat AB tai D va BD tai H. Tinh so do cac cung AD,DH va HC
cho tam giac abc vuong tai a, co duong cao ah ( h thuoc bc ), biet ah=6cm,hc-hb=9cm.Tinh hb,hc
Ta có: \(HC-HB=9\Rightarrow HC=9+HB\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC=HB\left(HB+9\right)\Rightarrow HB^2+9HB=36\)
\(\Rightarrow HB^2+9HB-36=0\Rightarrow\left(HB-3\right)\left(HB+12\right)=0\)
mà \(HB>0\Rightarrow HB=3\left(cm\right)\Rightarrow HC=3+9=12\left(cm\right)\)
Ta có: HC-HB=9(gt)
nên HB=HC-9
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\)
\(\Leftrightarrow HC\left(HC-9\right)-36=0\)
\(\Leftrightarrow HC^2-9HC-36=0\)
\(\Leftrightarrow HC^2-12HC+3HC-36=0\)
\(\Leftrightarrow\left(HC+3\right)\left(HC-12\right)=0\)
\(\Leftrightarrow HC=12\left(cm\right)\)
\(\Leftrightarrow HB=HC-9=12-9=3\left(cm\right)\)
1. cho tam giac ABC vuong tai A , duong cao AH . I,K lan luot la trung diem cua AB va AC. Tinh HB, HC,AH va dien tich tu giac AIHK biet HI 9cm, HK= 12cm
cho tam giac ABC vuong tai A. duong cao tai AH,duong phan giac BD biet AB 3cm,AC 4cm.
a) tinh do dai doan AD va DC
b) goi k la giao diem cua AH va BD (CM : AB.BK=BD.HB)
c) CM tam AKD Can.
Cho tam giac abc nhon. goi h la truc tam cua tam giac abc. biet ah=bc. tinh bac
cho tam giac abc vuong tai a co c =150 trung tuyen am. duong trung truc cua bc cat cac duong thang ab va ac tai n va p
tinh k=\(\frac{AP}{PC}\)
goi i la giao diem cua bp va nc so sanh ma va mi
ai giai dc tich 20 like
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la \(\frac{5}{12}\), canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet \(\frac{AB}{AC}=\frac{5}{7}\), duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm. Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, \(\frac{HB}{HC}=\frac{1}{4}\).
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheo AC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
trời ơi nhiều quá sao làm nổi nhìn thấy chán
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la $\frac{5}{12}$512 , canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet $\frac{AB}{AC}=\frac{5}{7}$ABAC =57 , duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm.Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, $\frac{HB}{HC}=\frac{1}{4}$HBHC =14 .
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheoAC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
Bạn học lớp 9 mà đúng ko...mấy bài này áp dụng hệ thức lượng trong tam giác vuông và vài bài có tính chất đường phân giác là ra thoy
cho tam giac ABC vuong tai,duong cao AH,biet HB=25cm,HC=36cm,AH=30cm.
a/ chung minh tam giac HBA dong dang voi tam giac HAC.
b/tinh do dai cac doan thang AB,BC,AC
a) Ta có: \(\widehat{HAB}+\widehat{HBA}=90^0\)
\(\widehat{HAB}+\widehat{HAC}=90^0\)
suy ra: \(\widehat{HBA}=\widehat{HAC}\)
Xét 2 tam giác vuông: \(\Delta HBA\) và \(\Delta HAC\) có:
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{HBA}=\widehat{HAC}\) (CMT)
suy ra: \(\Delta HBA~\Delta HAC\)
b) \(BC=BH+HC=25+36=61\)cm
\(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)
suy ra: \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm
\(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm
p/s: tham khảo