Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
hoài phan
Xem chi tiết
Thắng Nguyễn
4 tháng 3 2018 lúc 12:29

\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)

ĐK: \(x\ge-\frac{1}{3}\)

\(\Leftrightarrow5x^2+4x-9-\left(4x\sqrt{x^2+x+2}-8\right)-\left(4\sqrt{3x+1}-8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{x^2\left(x^2+x+2\right)-4}{x\sqrt{x^2+x+2}+2}-4\frac{3x+1-4}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{\left(x-1\right)\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+9-4\frac{\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3}{\sqrt{3x+1}+2}\right)=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Kiệt Nguyễn
16 tháng 4 2020 lúc 15:00

\(ĐKXĐ:x\ge\frac{-1}{3}\)

\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)

\(\Leftrightarrow\left(x^2+x+2-4x\sqrt{x^2+x+2}+4x\right)\)\(+\left(3x+1-4\sqrt{3x+1}+4\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x+2}-2x\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=2x\\\sqrt{3x+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x^2+x+2=4x\\3x+1=4\end{cases}}\Leftrightarrow x=1\)

Vậy nghiệm duy nhất của phương trình là x = 1

Khách vãng lai đã xóa
hoài phan
4 tháng 3 2018 lúc 17:18
Thks bạn :)
Phạm Băng Băng
Xem chi tiết
Bếu Khá BảnH
Xem chi tiết
Bếu Khá BảnH
11 tháng 4 2020 lúc 7:08

@Nguyễn Việt Lâm@Mysterious PersonAkai Haruma@tth_new giúp em với

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 10 2019 lúc 0:27

a/ ĐKXĐ: \(x^2+3x+2\ge0\)

\(\Leftrightarrow3-2\sqrt{x^2+3x+2}=1-2\sqrt{x^2-x+1}\)

\(\Leftrightarrow\sqrt{x^2+3x+2}=\sqrt{x^2-x+1}+1\)

\(\Leftrightarrow x^2+3x+2=x^2-x+1+1+2\sqrt{x^2-x+1}\)

\(\Leftrightarrow2x=\sqrt{x^2-x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=x^2-x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3x^2+x-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-1+\sqrt{13}}{6}\\x=\frac{-1-\sqrt{13}}{6}\left(l\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 10 2019 lúc 0:32

b/ ĐKXĐ: \(3x^2-7x+2\ge0\)

\(\Leftrightarrow\sqrt{3x^2-5x+7}=3-\sqrt{3x^2-7x+2}\) (1)

\(\Rightarrow3x^2-5x+7=9+3x^2-7x+2-6\sqrt{3x^2-7x+2}\)

\(\Rightarrow2-x=3\sqrt{3x^2-7x+2}\) (\(x\le2\))

\(\Rightarrow\left(2-x\right)^2=9\left(3x^2-7x+2\right)\)

\(\Rightarrow x^2-4x+4=27x^2-63x+18\)

\(\Rightarrow26x^2-59x+14=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{26}\end{matrix}\right.\)

Do bước biến đổi thứ 2 ko phải phép tương đương nên cần thay 2 nghiệm vào (1) để kiểm tra lại, bạn tự thay nhé

Nguyễn Việt Lâm
2 tháng 10 2019 lúc 0:42

c/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

\(\Leftrightarrow2x^2+9x+7+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=2x^2+9x+7\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)\left(x+1\right)\left(x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

d/ ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\1\le x\le5\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x^2-1}+\sqrt{5-x}=\sqrt{x^2+3}\)

\(\Leftrightarrow x^2-x+4+2\sqrt{\left(x^2-1\right)\left(5-x\right)}=x^2+3\)

\(\Leftrightarrow2\sqrt{\left(x^2-1\right)\left(5-x\right)}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\4\left(x^2-1\right)\left(5-x\right)=\left(x-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)\left[4\left(x+1\right)\left(5-x\right)-x+1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-4x^2+15x+21=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{15+\sqrt{561}}{8}\\x=\frac{15-\sqrt{561}}{8}\left(l\right)\end{matrix}\right.\)

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 15:46

a.

\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:

\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)

\(\Leftrightarrow3a^2=b^2\)

\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 15:47

b.

\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

Lặp lại cách làm câu a

vodiem
Xem chi tiết
Thanh Tùng DZ
31 tháng 10 2019 lúc 15:44

ĐKXĐ : \(\frac{5}{3}\le x\le12\)

\(2\sqrt{3x-5}-3\sqrt{12-x}+x^2+x-7=0\)

\(\Leftrightarrow\left(2\sqrt{3x-5}-4\right)+\left(9-3\sqrt{12-x}\right)+x^2+x-12=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{2\sqrt{3x-5}+4}+\frac{9\left(x-3\right)}{9+3\sqrt{12-x}}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{2\sqrt{3x-5}+4}+\frac{9}{9+3\sqrt{12-x}}+x+4\right)=0\)

\(\Leftrightarrow x=3\)( vì vế trong ngoặc thứ 2 > 0 \(\forall\)\(\frac{5}{3}\le x\le12\))

Khách vãng lai đã xóa
Dương Thị Thu Hiền
Xem chi tiết
ILoveMath
28 tháng 11 2021 lúc 16:20

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

Lê Duy Thanh
Xem chi tiết
trương khoa
12 tháng 5 2021 lúc 20:44

\(3x^2+\sqrt{2}x-3+\sqrt{2}=0\)

Ta có \(a-b+c=3-\sqrt{2}-3+\sqrt{2}=0\)

Vậy phương trình có 2 nghiệm phân biệt

\(x_1=-1\)

\(x_2=-\dfrac{-3+\sqrt{2}}{3}=\dfrac{3-\sqrt{2}}{3}\)