Cho tam giác ABC vuông tại A có đường cao AH
a) Cho HB/HC=9/16 và AH=8cm. Tính AB và AC
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH có AB = 15, HC = 16. Tính HB và AC?
\(BH=\dfrac{AB^2}{BC}=\dfrac{225}{16+BH}\\ \Leftrightarrow BH^2+16BH-225=0\\ \Leftrightarrow BH=9\left(BH>0\right)\\ \Leftrightarrow BC=BH+HC=25\\ \Leftrightarrow AC=\sqrt{BC^2-AB^2}=20\left(cm\right)\)
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
cho tam giác ABC vuông tại A, đường cao AH,biết AB=24cm,HB/HC=9/16.Tính AC,BC,AH
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$
$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$
$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)
cho tam giác abc vuông tại a , đường cao ah ab=6cm ac=8cm. a) tính bc,ah,bh,ch b) kẻ ie và if lần lượt vuông góc với ab và ac .cm hb .hc=ea.eb+fa.fc
tam giác ABC vuông tại A nên áp dụng Py-ta-go
\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
b) Kẻ HE,HF vuông góc với AB,AC chớ,chứ ko có điểm I
Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Rightarrow EF=AH\)
tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow EA.EB=EH^2\)
tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow FA.FC=HF^2\Rightarrow EA.EB+FA.FC=EH^2+FH^2=EF^2=AH^2\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC\Rightarrow HB.HC=EA.EB+FA.FC\)
cho tam giác ABC vuông tại A, đường cao AH,biết AB=24cm,\(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\).Tính AC,BC,AH
Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(AB^2=BH.BC=BH\left(BH+HC\right)=\dfrac{9}{16}HC\left(\dfrac{9}{16}HC+HC\right)\)
\(=\dfrac{9}{16}HC.\dfrac{25}{16}HC=\dfrac{225}{256}HC^2\)
\(\Rightarrow HC^2=\dfrac{256AB^2}{225}=\dfrac{16384}{25}\Rightarrow HC=\dfrac{128}{5}\left(cm\right)\)
\(\Rightarrow HB=\dfrac{72}{5}\Rightarrow BC=\dfrac{128+72}{5}=40\left(cm\right)\)
\(\Rightarrow AC=\sqrt{BC ^2-AB^2}=\sqrt{40^2-24^2}=32\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=\dfrac{96}{5}\left(cm\right)\)
\(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HC=\dfrac{16}{9}HB\)
Áp dụng hệ thức lượng:
\(AB^2=HB.BC=HB\left(HB+HC\right)\)
\(\Leftrightarrow24^2=HB.\left(HB+\dfrac{16}{9}HB\right)\)
\(\Rightarrow HB^2=\dfrac{5184}{25}\Rightarrow HB=\dfrac{72}{5}\left(cm\right)\)
\(HC=\dfrac{16}{9}HB=\dfrac{128}{5}\) (cm)
\(BC=HB+HC=40\) (cm)
\(AC=\sqrt{BC^2-AB^2}=32\) (cm)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{HB}{HC}=\) \(\dfrac{9}{16}\)
Tính \(\dfrac{AB}{AC}\)
(AB/AC)^2=HB/HC
=>(AB/AC)^2=9/16
=>AB/AC=3/4
Cho tg ABC vuông tại A, đường cao AH. Biết AB =6cm, AC =8cm A) nêu các tam giác đồng dạng và giải thích B) tính AH, HB, HC C) CMR AH²=HB.HC, AB²=HB.BC
a. Xét Δ HBA và Δ ABC
\(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) Δ HBA \(\sim\) Δ ABC (g.g) (1)
Xét Δ HAC và Δ ABC:
\(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)
\(\widehat{C}\) chung
\(\Rightarrow\) Δ HAC \(\sim\) Δ ABC (g.g) (2)
Từ (1) và (2) \(\Rightarrow\) Δ HBA \(\sim\) Δ HAC
b. Ta có: Δ ABC vuông tại A
Theo đ/lí Py - ta - go:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: Δ HBA \(\sim\) Δ ABC:
\(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\)
\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\)
\(\Rightarrow\) HA = 4,8 cm
\(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\) \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\)
\(\Rightarrow\) HB = 3,6 cm
Ta có: Δ HAC \(\sim\) Δ ABC
\(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\)
\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\)
\(\Rightarrow\) HC = 6,4cm
c. Ta có: Δ HBA \(\sim\) Δ HAC
\(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\)
AH2 = HB . HC
Ta có : Δ HBA \(\sim\) Δ ABC
\(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\)
\(\Rightarrow\) AB2 = HB . BC
a: Xet ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
góc C chung
=>ΔCHA đồng dạng với ΔCAB
=>ΔHAB đồng dạng với ΔHCA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
HB=6^2/10=3,6cm
HC=10-3,6=6,4cm
c: ΔABC vuông tại A
mà AH vuông góc BC
nên AH^2=HB*HC; AB^2=BH*BC
Cho tam giác ABC vuông tại A có đường cao AH
a)Cho Hb/Hc=9/16 và AH=48cm tính AB và AC
b)Cho AB/AC=3/4 và BC=125cm.Tính AH
c)Cho AB/ACC= 3/7 và AH= 42cm. Tính BH và CH
cảm ơn ạ