Cho \(\frac{a}{b}=\frac{d}{c}\). CMR :\(\frac{a^2+d^2}{b^2+c^2}=\frac{ad}{bc}\)
Cho ad=bc với a,b,c,d khác 0.CMR:
a)\(\frac{5a+7b}{5c+7d}=\frac{5a-7b}{5a-7d}\)
b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
a) Mk sửa lại chỗ \(\frac{5a-7b}{5a-7d}\) nhé, đề đúng phải là \(\frac{5a-7b}{5c-7d}\)
Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{7b}{7d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a+7b}{5c+7d}=\frac{5a-7b}{5c-7d}\left(đpcm\right)\)
b) Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
cho 4 số thực a,b,c,d tm a+b+c+d=4
cmr \(\frac{\left(a+\sqrt{b}\right)^2}{\sqrt{a^2-ab+b^2}}+\frac{\left(b+\sqrt{c}\right)^2}{\sqrt{b^2-bc+c^2}}+\frac{\left(c+\sqrt{d}\right)^2}{\sqrt{c^2-cd+d^2}}+\frac{\left(d+\sqrt{a}\right)^2}{\sqrt{d^2-ad+a^2}}\le16\)
1.cho tam giác ABC vuong tại A có AD là duong phan giác góc A( D thuoc BC) biết AB= c,AC=b và AD=d
cm\(\frac{\sqrt{2}}{d}=\frac{1}{b}+\frac{1}{c}\)
2.Cho a,b,c là 3 số nguyên dương thỏa mãn a+b+c+ab+bc+ca=6abc
cmr:\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)>=3
cho tam giác ABC vuông tại A, tia phân giác của góc BAC cắt BC tại D . E,F là hình chiếu vuông góc của D trên AB và AC. Đặt AC=b, AB=c, BC=a, AD=d
a/tính chu vi và diện tích tứ giác AEDF theo d
b/CMR :\(\frac{\sqrt{2}}{d}=\frac{1}{b}+\frac{1}{c}\)
c/ CMR :\(\frac{1}{\sin\frac{A}{2}}+\frac{1}{\sin\frac{B}{2}}+\frac{1}{\sin\frac{C}{2}}>6\)
Cho a,b,c,d>0, ab+bc+cd+da=3. CMR \(\frac{a}{b^2+c^2+d^2}+\frac{b}{c^2+d^2+a^2}+\frac{c}{d^2+a^2+b^2}+\frac{d}{a^2+b^2+c^2}>\frac{4}{a+b+c+d}\)
cho các số dương a,b,c,d
\(a^2+b^2+c^2+d^2=1\)
CMR:
\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-cd}+\frac{1}{1-ad}\le\frac{16}{3}\)
Bài1. Cho 2 phân số \(\frac{a}{b}>\frac{c}{d}\)
CMR: ad > bc
Bài2. Cho ad > bc
CMR: \(\frac{a}{b}>\frac{c}{d}\)
Cho a,b,c,d thỏa mãn $\frac{a}{b}$ =$\frac{b}{c}$ =$\frac{c}{d}$ =$\frac{d}{a}$
CMR:($\frac{2019b+2020c-2021d}{2019c+2020d-2021e}$)^3=$\frac{a^2}{bc}$
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\\ \Rightarrow VT=\left(\dfrac{2019a+2020a-2021a}{2019a+2020a-2021a}\right)^3=1^3=1=\dfrac{a^2}{a\cdot a}=VP\)
Bài 1) a) Cho a,b,c khác 0 và a2 + bc
CMR: \(\frac{a^2+c^2}{b^2+d^2}\) = \(\frac{c}{b}\)
b) Cho a,b,c,d khác 0 bà b2 = ad, c2 = bd
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)