Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Nam
Xem chi tiết
Phùng Minh Quân
19 tháng 3 2018 lúc 9:49

Thay x = 2018 vào \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\) ta được 

\(2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018-1\)

\(=\)\(2018^{2018}-2019\left(2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\right)-1\)

Đặt \(B=2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\)

\(2018B=2018^{2018}-2018^{2017}+2018^{2016}-...-2018^3+2018^2\)

\(2018B+B=\left(2018^{2018}-2018^{2017}+...+2018^2\right)+\left(2018^{2017}-2018^{2016}+...+2018\right)\)

\(2019B=2018^{2018}-2018\)

\(B=\frac{2018^{2018}-2018}{2019}\)

\(\Rightarrow\)\(A=2018^{2018}-2019.B-1\)

\(\Rightarrow\)\(A=2018^{2018}-\frac{2019\left(2018^{2018}-2018\right)}{2019}-1\)

\(\Rightarrow\)\(A=2018^{2018}-\left(2018^{2018}-2018\right)-1\)

\(\Rightarrow\)\(A=2018^{2018}-2018^{2018}+2018-1\)

\(\Rightarrow\)\(A=2018-1\)

\(\Rightarrow\)\(A=2017\)

Vậy giá trị của \(A=2017\) tại \(x=2018\)

Chúc bạn học tốt ~ 

Nguyễn Thái Sơn
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 5 2020 lúc 11:41

Vào Tkhđ của mik xem có ảnh ko nhé !

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
15 tháng 5 2020 lúc 11:57

https://m.imgur.com/a/o7Vo0kL

 CHịu khó gõ link.onl đt bèn làm ntnày thôi nha

Ảnh trên không hiện rồi nhé !

Khách vãng lai đã xóa
Nguyễn Hoàng Tân
15 tháng 5 2020 lúc 12:46

12nhabn hehe

Khách vãng lai đã xóa
Nguyễn Hương
Xem chi tiết
Nguyễn Khang
6 tháng 6 2018 lúc 12:10

Ta có 2019=2018+1=x+1

Thay 2019=x+1 vào đa thức P(x) ta có :

\(P\left(x\right)=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-.......+\left(x+1\right)\)

\(P\left(x\right)=x^{10}-x^{10}-x^9+x^9+x^8-.......+x+1\)

\(P\left(x\right)=\left(x^{10}-x^{10}\right)-\left(x^9-x^9\right)+\left(x^8-x^8\right)-....+x+1\)

\(P\left(x\right)=x+1=2018+1=2019\)

Đặng Thu Hiền
1 tháng 5 2019 lúc 8:59

Theo đề bài ta có 2019=2018+1=x+1

Thay 2019=x+1 vào đa thức P(x) ta có :

P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)

P(x)=x10−x10−x9+x9+x8−.......+x+1P(x)=x10−x10−x9+x9+x8−.......+x+1

P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1

P(x)=x+1=2018+1=2019

Giang Nguyen
Xem chi tiết
O=C=O
9 tháng 4 2018 lúc 18:24

\(E\left(x\right)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E\left(2018\right)\) nên :

\(\Rightarrow E\left(x\right)=2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018+1\)

Tới đoạn này thì ghi dấu "=" rồi tính và làm tương tự

Akai Haruma
9 tháng 4 2018 lúc 18:27

Lời giải

Ta có:

\(E(x)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E(x)=(x^{2018}-2018x^{2017})-(x^{2017}-2018x^{2016})+(x^{2016}-2018x^{2015})-....+(x^2-2018x)-x+1\)

\(E(x)=x^{2017}(x-2018)-x^{2016}(x-2018)+x^{2015}(x-8)-...+x(x-2018)-x+1\)

\(E(x)=(x-2018)(x^{2017}-x^{2016}+x^{2015}-...+x)-x+1\)

Suy ra \(E(2018)=-2018+1=-2017\)

BÙI THỊ HOÀNG MI
Xem chi tiết
Thúy Ngân
19 tháng 5 2018 lúc 9:48

Ta có: x = 2018 \(\Rightarrow x+1=2019\).

\(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019+1\)

\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)

\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)

\(=-x-1=-2018-1=-2019\)

Nguyễn Minh Hoàng
Xem chi tiết
duong minh duc
Xem chi tiết
Thu HIền
Xem chi tiết
Phạm Hữu Nam chuyên Đại...
Xem chi tiết
Nguyễn Phạm Hồng Anh
25 tháng 4 2019 lúc 15:17

Sửa đề nha :

f(x) = -x2019 + 2019x2018 - 2019x2017+...- 2019x2 + 2019x + 2019

Ta có : 2019 = 2018 + 1 = x + 1

=> f(x) = -x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... - ( x + 1 )x2 + ( x + 1 )x + 2019

          = -x2019 + x2019 + x2018 - x2018 - x2017 + ... - x3 - x2 + x2 + x + 2019

          = x + 2019

          = 4037

Study well ! >_<

Bạn Hồng Anh làm sai rồi Ở -2019x (dấu trừ sao bạn đổi thành cộng ??)

Kq =1 nha (-2018+2019)

Hok tốt