CMR: Stam giác=1/2 tích 2 cạnh kề góc nhọn nhân Sin góc ấy
chứng minh rằng:
a) diện tích của một tam giác bằng nửa tích của hai cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy
b) Diện tích của một hình bình hành bằng tích của hai cạnh kề nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy
GIẢI GIÚP MIK VS M.N
A) Vẽ t/g ABC (A là góc nhọn), đường cao BH.
1/2.AB.AC.sinA = 1/2.AB.AC.(BH/AB) = 1/2.BH.AC = S(ABC)
Chứng minh:Diện tích của 1 tam giác bằng nửa tích 2 cạnh nhân với sin góc nhọn tạo bởi 2 đoạn thẳng chứa 2 cạnh ấy.
chứng minh: diện tích của 1 tam giác bằng nửa tích 2 cạnh nhân với sin góc nhọn tạo bởi 2 đoạn thẳng chứa 2 cạnh ấy
chăm chỉ làm giùm nhe
Gọi Tam giác ABC cho dẽ làm . Kẻ AH vg BC
Tam giác AHB vuông tại H , theo HT giữa cạnh và góc :
AH = AB .sin B
Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.sinB.BC\)
Chứng minh
Diện tích của một hình bình hành bằng tích của hai cạnh kề nhân với sin của góc nhọn tạo bởi các đường thẳng chứa hai cạnh ấy
Gọi hình bình hành đó là ABCD , từ A kẻ đường cao AH xuống cạnh CD (H thuộc CD)
Ta có : \(AH=AD.sinD\)
\(\Rightarrow S_{ABCD}=CD.AH=CD.AD.sinD\)
Vậy ta có điều phải chứng minh
Chứng minh:
a, Diện tích của một tam giác bằng nửa tích của hai cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa hai cạnh ấy
b, Diện tích của tứ giác bất kỳ bằng nửa tích của hai đường chéo nhân với sin của góc nhọn tạo bởi hai đường chéo
a, Giả sử tam giác ABC có A ^ < 90 0 kẻ đường cáo BH. Ta có BH=AB.sin A ^
=> S ∆ A B C = 1 2 A C . B H = 1 2 A B . A C . sin A
b, Giả sử tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O có
A
O
B
^
=
α
<
90
0
. Kẻ AH
⊥
BD, tại H và CK
⊥
BD tại K
Ta có: AH = OA.sinα
=> S A B D = 1 2 B D . A H = 1 2 B D . O A . sin α
Tương tự: S C B D = 1 2 B D . C K = 1 2 B D . O C . sin α
=> S A B C D = S A B D + S C B D = 1 2 B D . O A . sin α + 1 2 B D . O C . sin α = 1 2 B D . A C . sin α
CMR: Diện tích của 1 tam giác bằng nửa tích 2 cạch với sin của góc nhọn xen giữa 2 cạnh đó
Giúp mk vs ạ mk tik cho
CMR: Nếu 1 tam giác có 2 cạnh là a và b, góc nhọn tạo bở 2 đừơng thẳng đó là \(\alpha\) thì diện tích của tam giác đó bằng : \(S=\frac{1}{2}ab\sin\alpha\)
Cho tam giác nhọn ABC 2 đường cao BD và CE. CMR
a) diện tích tam giác ADE= diện tích tam giác ABC . Cos^2 góc A
b) diện tích tứ giác BCDE = diện tích tam giác ABC . Sin góc A
Gọi AH và AK lần lượt là 2 đường cao của \(\Delta ADE\)và \(\Delta ABC\)
Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^o\)nên tứ giác BCDE nội tiếp
\(\Rightarrow\widehat{AED}=\widehat{ACB}\)( cùng bù với \(\widehat{BED}\))
\(\Rightarrow\Delta ADE\approx\Delta ABC\left(g.g\right)\) ( nếu chưa học tứ giác nội tiếp thì có thể xét các tam giác đồng dạng để c.m nha )
\(\Rightarrow\frac{AD}{AB}=\frac{DE}{BC}=\frac{AH}{AK}\) ( vì tỉ số đồng dạng bằng tỉ số đường cao )
a) Ta có : \(\frac{S_{ADE}}{S_{ABC}}=\frac{\frac{DE.AH}{2}}{\frac{BC.AK}{2}}=\frac{AD}{AB}.\frac{AH}{AK}=\left(\frac{AD}{AB}\right)^2\)
Mà \(\cos A=\frac{AD}{AB}\Rightarrow\cos^2=\left(\frac{AD}{AB}\right)^2\)\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\cos^2A\)
\(\Rightarrow S_{ADE}=S_{ABC}.\cos^2A\)
b) \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}.\left(1-\cos^2A\right)=S_{ABC}.\sin^2A\)( vì \(\cos^2A+\sin^2A=1\))
chứng minh đường phân giác góc ngoài của 1 góc trong 1 tam giác chia cạnh đối diện thành 2 đoạn thẳng tỉ lệ với 2 cạnh kề đoạn thẳng ấy