Gọi hình bình hành đó là ABCD , từ A kẻ đường cao AH xuống cạnh CD (H thuộc CD)
Ta có : \(AH=AD.sinD\)
\(\Rightarrow S_{ABCD}=CD.AH=CD.AD.sinD\)
Vậy ta có điều phải chứng minh
Gọi hình bình hành đó là ABCD , từ A kẻ đường cao AH xuống cạnh CD (H thuộc CD)
Ta có : \(AH=AD.sinD\)
\(\Rightarrow S_{ABCD}=CD.AH=CD.AD.sinD\)
Vậy ta có điều phải chứng minh
chứng minh rằng điều kiện cần và đủ để hai đường chéo của tứ giác lowig vuông góc với nhau là tổng các bình phương của các cạnh đối diện của tứ giác bằng nhau
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH
Bài 1 : Cho tam giác ABC nhọn nội tiếp ( O ; R ) , H là trực tâm tam giác ABC . Vẽ đường kính AD của ( O ; R ) . Chứng minh :
a, BH // DC
b, tứ giác BHCD là hình bình hành
c, Gọi giao điểm của BH và AC là E , góc BAC = 60* , góc ACB = 45* , AC = 5 cm . Tính diện tích tam giác ABC
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh :
a, B , O , C thẳng hàng
b, diện tích tâm giác ABC nhỏ hơn hoặc bằng \(R^2\)
1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).
1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).
Cho hình thang ABCD có Â=D=90° và hai đường chéo vuông góc với nhau tại O
a. Chứng minh hình thang này có chiều cao bằng trung bình nhân của hai đáy
b. Cho AB=9, CD=16. Tính S hình thang ABCD
c. Tính độ dài các đoạn thẳng OA, OB,OC, OD
Giúp tui đi
Cho đường tròn ( O ; R ), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn ( B ; C là các tiếp điểm ).
a. Chứng minh : \(OA\perp BC\)
b. Vẽ đường kính COD. Chứng minh : DB song song với AO.
c. Gọi E là một điểm sao cho tứ giác OAED là hình bình hành. Chứng minh tứ giác AEBO là hình thang cân và tính diện tích của tứ giác đó khi biết R = 30cm, OA = 5cm.
Cho 3 đường thẳng: (d1) y=3x+5; (d2) y=2/3x-2 ; (d3) y=-2x+3
A=d1∩d2
B=d2 giao d3
C=d3 giao d1
a)Tìm tọa độ ABC
b) Tính gần đúng hệ số góc của đường thẳng chứa tia phân giác trong góc A của ΔABC. Và tọa độ giao điểm P của tia phân giác trong góc A với cạnh BC
c) Tính gần đúng diện tích phần hình phẳng giữa đường tròn nội tiếp và đường tròn ngoại tiếp của ΔABC
Cho một hình thang cân có đường chéo vuông góc với cạnh bên. Biết đáy nhỏ dài 14cm; đáy lớn dài 50cm. Diện tích của hình thang đó bằng ... .