Cho hình tam giác DEF vuông tại D, gọi I là trung điểm DF, M là trung điểm của EF.N đối xứng với M qua I. CM tứ giác DMFN là hình thoi.
Cho tam giác DEF cân tại D, phân giác DM. Gọi I là trung điểm của DF, N đối xứng với M qua I.
a/ C/m: Tứ giác DMFN là hình chữ nhật.
b/ Tứ giác DEMN là hình bình hành?
Cho tam giác DEF cân tại D, phân giác DM. Gọi I là trung điểm của DF, N đối xứng với M qua I.
a/ C/m: Tứ giác DMFN là hình chữ nhật.
b/ Tứ giác DEMN là hình bình hành?
gấp lắm mọi người ơi huhuh
Bạn tham khảo
Giải:
a. Điểm M và điểm D đối xứng qua trục AB
⇒ AB là đường trung trực của đoạn thẳng MD
⇒ AB ⊥ DM
⇒ ˆAED=900AED^=900
Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN
⇒ AC ⊥ DN ⇒ˆAFD=900⇒AFD^=900
ˆEAF=900EAF^=900 (gt)
Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)
b. Tứ giác AEDF là hình chữ nhật ⇒ DE // AC; DF // AB
Trong ∆ ABC ta có: DB = DC (gt)
DE // AC
Suy ra: AE = EB (tính chất đường trung bình tam giác); DF// AB
Suy ra: AF = FC (tính chất đường trung bình của tam giác)
Xét tứ giác ADBM : AE = EB (chứng minh trên)
ED = EM (vì AB là trung trực DM)
Quảng cáo
Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
AB ⊥ DM
Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)
Xét tứ giác ADCN:
AF = FC (chứng minh trên)
DF = FN (vì AC là đường trung trực DN)
Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
AC ⊥ DN
Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)
c. Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD
hay AM // BC và AM = AD (1)
Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN
hay AN // BC và AN = AD (2)
Từ (1) và (2) suy ra: AM trung với AN hay M, A, N thẳng hàng
Và AM = AN nên A là trung điểm của MN
Vậy điểm M và điểm N đối xứng với nhau qua điểm A
d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF
Ta có: AE = 1212AB ; AF =1212AC
nên AE = AF AB = AC
Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.
Cho tam giác ABC vuông tại A (AB<AC) . gọi I là trung điểm của cạnh BC . Qua I vẽ iM vuông góc với AB tại M và IN vuông góc với AC tại N
a) CM tứ giác AMIN là hình chữ nhật
b) Gọi D là điểm đối xứng của I qua N. CM tứ giác ADCI là hình thoi
c) Cho AC = 20 cm , BC=25 cm tính diện tích rABC
d) Đường thẳng BN cắt cạnh DC tại K . CM : DK/DC=1/3
a: Xét tứ giác AMIN có
\(\widehat{AIM}=\widehat{AIN}=\widehat{NAM}=90^0\)
Do đó: AMIN là hình chữ nhật
CHo tam giác DEF cân tại E, có M, N lần lượt là trung điểm của ED và EF.
a. Chứng minh từ giác DMNF là hình thang cân
b. Gọi A là điểm đối xứng với M qua N. Chứng minh tứ giác DMAF là hình bình hành
c. Gọi E là điểm đối xứng với E qua DF. H là giao điểm của EK và DF. Chứng minh tg EDKF là hình thoi
d. Gọi I là hình chiếu của H lên KF. C là trung điểm của HI. Chứng minh DI vuông góc KC
Tam giác DEF vuông tại D , đường trung bình DK . Gọi I là trung điểm của DE . M đối xứng với K qua I. N đối xứng D qua K
a) tứ giác DMKF là hình gì
b)tứ giác DMNF là hcn
a: Xét tứ giác DMKF có
KM//DF
KM=DF
Do đó: DMKF là hình bình hành
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Qua M kẻ MP vuông góc với DF tại Q 1) Chứng minh tứ giác DPMQ là hình chữ nhật 2) Biết EF= 5cm. Tính độ dài DM 3) Gọi H là điểm đối xứng với M qua DE, Glaf điểm đối xứng với M qua DF. Chứng minh H đối xứng với G qua D
a/ Xét tứ giác DPMQ có
∠EDF=∠MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> ˆIDE=ˆEDMIDE^=EDM^ (2)
CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)
Từ (2) ; (4)
=> ∠IDE+∠EDF+∠KDF=∠IDK=180oIDE^+EDF^+KDF^=IDK^=180o
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.
Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.
Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.
Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I
a) Chứng minh tứ giác DKEH là hình chữ nhật.
b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.
c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.
Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K
a) Chứng minh tứ giác MEFK là hình bình hành.
b) Biết MN=5 cm. Tính độ dài EF?
Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.
a) Tứ giác HIAB là hình gì ? Vì sao?
b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.
c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.
Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi I là trung điểm của AB; N là điểm đối xứng với M qua I, E là điểm đối xứng với M qua AC, D là điểm đối xứng với A qua M.
a) Tứ giác ABDC là hình gì ? Vì sao ?
b) Chứng minh tứ giác AMBN là hình thoi.
c) Chứng minh điểm E đối xứng với điểm N qua A.
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECB là hình thang cân.
Cho tam giác DEF vuông tại D, đường trung tuyến DM. Gọi K là trung điểm của ED, A là điểm đối xứng với M qua K
a) Chứng minh điểm A đối xứng với điểm M qua DE
b) Tứ giác là hình gì? Vì sao?
c) Tam giác DEF có điều kiện gì thì DAEM là hình vuông