Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh
Xem chi tiết
»» Hüỳñh Äñh Phươñg ( ɻɛ...
29 tháng 5 2021 lúc 10:55

Tích trên có thừa số 1 - 253 = -252 còn các thừa số kia trong tích đều dương. Vậy tích trên âm.

Mà 2/5 dương nên đpcm

Khách vãng lai đã xóa
Phạm Khánh Linh
Xem chi tiết
tran thi my linh
29 tháng 4 2015 lúc 9:46

de yeu cau gi Phạm Khánh Linh

trịnh hà vân
14 tháng 4 2021 lúc 20:26

(1−13)(1−16)...(1−1253)

=23⋅56⋅...⋅252253=46⋅1012⋅...⋅504506

=1⋅42⋅3⋅2⋅53⋅4⋅...⋅21⋅2422⋅23

=1⋅2⋅3⋅42⋅52⋅...⋅212⋅22⋅23⋅242⋅32⋅42⋅...⋅222⋅23=1⋅243⋅22=2466<25

Khách vãng lai đã xóa
Nguyễn Hoàng Anh
Xem chi tiết
sky ler
Xem chi tiết
HT2k02
4 tháng 4 2021 lúc 20:29

\(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{253}\right)\\=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{252}{253}\\ =\dfrac{4}{6}\cdot\dfrac{10}{12}\cdot...\cdot\dfrac{504}{506}\\ =\dfrac{1\cdot4}{2\cdot3}\cdot\dfrac{2\cdot5}{3\cdot4}\cdot...\cdot\dfrac{21\cdot24}{22\cdot23}\\ =\dfrac{1\cdot2\cdot3\cdot4^2\cdot5^2\cdot...\cdot21^2\cdot22\cdot23\cdot24}{2\cdot3^2\cdot4^2\cdot...\cdot22^2\cdot23}\\ =\dfrac{1\cdot24}{3\cdot22}=\dfrac{24}{66}< \dfrac{2}{5}\)

Nguyễn Minh Phú
Xem chi tiết
unnamed
Xem chi tiết

B

Yến vy
5 tháng 3 2022 lúc 20:38

B

Kim Ngọc Phạm
5 tháng 3 2022 lúc 20:47

B. \(\dfrac{8}{11}\)

trần thùy dương
Xem chi tiết
nhok họ nguyễn
3 tháng 9 2017 lúc 23:58

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

Trịnh Quang
Xem chi tiết
nguyễn thị kim ngân
7 tháng 4 2023 lúc 21:45

Ta có : 1-1/2+1/3-1/4+1/5-1/6

           = 1+1/2+1/3+1/4+1/5+1/6-2.(1/2+1/4+1/6)

           = 1+1/2+1/3+1/4+1/5+1/6-(1+1/2+1/3)

           =1+1/2+1/3+1/4+1/5+1/6-1-1/2-1/3

           =1/4+1/5+1/6

Ha Pham
Xem chi tiết
HT.Phong (9A5)
3 tháng 8 2023 lúc 5:55

1) \(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}\)

\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\cdot\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b) Ta có:

\(A\cdot\sqrt{x}=25\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\cdot\sqrt{x}=25\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=25\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=5^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=5\\\sqrt{x}+1=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=16\\\sqrt{x}=-6\text{(vô lý)}\end{matrix}\right.\) 

c) Ta xét hiệu:

\(A-4=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}-4\)

\(A-4=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}-\dfrac{4\sqrt{x}}{\sqrt{x}}\)

\(A-4=\dfrac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}}\)

\(A-4=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}\)

\(A-4=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\) 

Với \(x>0\) thì \(\left(\sqrt{x}-1\right)>0\) và \(\sqrt{x}>0\)

\(\Rightarrow\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

Nên A > 4 (đpcm)

Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 3:59

1: \(A=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)

\(=\dfrac{\left(x-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

2: A*căn x=25

=>(căn x+1)^2=25

=>căn x+1=5

=>x=16

3: \(A-4=\dfrac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=>A>4