\(\frac{9}{10}+\frac{9}{10^2}+\frac{9}{10^3}+...+\frac{9}{10^{10}}\)
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\frac{5}{14}+\frac{-9}{10}.\frac{1}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)=\frac{-9}{10}.1=\frac{-9}{10}\)
\(\frac{1}{2}-\frac{1}{3}-\frac{2}{3}+\frac{1}{4}+\frac{2}{4}+\frac{3}{4}-\frac{1}{5}-\frac{2}{5}-\frac{3}{5}-\frac{4}{5}+...+\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)\(+\)\(\frac{9}{10}\)
Đề bài là gì bạn ơi có chỗ ...
chưa có đề bạn ơi! Y_Y
Hok tốt ^_^
Quy luật của dãy số này là gì bạn có thể nói rõ ra đc ko
\(\frac{-5}{9}.\frac{3}{11}-\frac{5}{9}.\frac{10}{11}+\frac{5}{9}.\frac{10}{11}+\frac{5}{9}.\frac{2}{11}\)
\(=\frac{5}{9}.\frac{-3}{11}-\frac{5}{9}.\frac{10}{11}+\frac{5}{9}.\frac{10}{11}+\frac{5}{9}.\frac{2}{11}=\frac{5}{9}.\left(\frac{-3}{11}-\frac{10}{11}+\frac{10}{11}+\frac{2}{11}\right)=\frac{5}{9}.\left(\frac{-1}{11}\right)=\frac{-5}{99}\)
\(\frac{1}{10}+\frac{9}{10}+\frac{10}{10}+9+\frac{160}{2}\)
\(\frac{1}{10}+\frac{9}{10}+\frac{10}{10}+9+\frac{160}{2}\)
\(=\frac{10}{10}+\frac{10}{10}+9+\frac{160}{2}\)
\(=1+1+9+80\)
\(=91\)
Ta có \(\frac{1}{10}+\frac{9}{10}+\frac{10}{10}+9+\frac{160}{2}=\left(\frac{1}{10}+\frac{9}{10}\right)+\left(\frac{10}{10}+9\right)+\frac{160}{2}\)
\(=1+10+80\)
\(=91\)
Vậy giá trị biểu thức là 91
\(\frac{1}{10}+\frac{9}{10}+\frac{10}{10}+9+\frac{160}{2}\)
\(=\) \(2+9+80\)
\(=\)\(91\)
Giải phương trình \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\Leftrightarrow\frac{9\left(X+9\right)\left(X+9\right)\left(X+10\right)+10\left(X+10\right)\left(X+10\right)\left(X+9\right)}{90\left(X+10\right)\left(X+9\right)}=\frac{9.90\left(X+9\right)+10.90\left(X+10\right)}{90\left(X+10\right)\left(X+9\right)}\)
\(\Rightarrow9\left(X+9\right)^2\left(X+10\right)+10\left(X+10\right)^2\left(X+9\right)=810\left(X+9\right)+900\left(X+10\right)\)
\(\Leftrightarrow\left(9X+90\right)\left(X^2+18X+81\right)+\left(10X+90\right)\left(X^2+20X+100\right)=810X+7290+900X+9000\)
\(\Leftrightarrow\)9X3+162X2+729X+90X2+1620X+7290+10X3+200X2+1000X+90X2+1800X+9000=1710X+16290
\(\Leftrightarrow\)19X3+542X2+5149X+16290=1710X+16290
\(\Leftrightarrow\)19X3+542X2=16290-16290+1710X-5149X
\(\Leftrightarrow\)19X3+542X2=-3439X
\(\Leftrightarrow\)19X3+542X2+3439X=0
RỒI GIẢI TIẾP
Mk nghĩ nên giải theo cách này thì hay hơn ( mk mớp 7 thui nên bài làm mang tính chất tham khảo nhé )
Ta có :
\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\Leftrightarrow\)\(\left(\frac{x+9}{10}+1\right)+\left(\frac{x+10}{9}+1\right)=\left(\frac{9}{x+10}+1\right)+\left(\frac{10}{x+9}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}=\frac{x+19}{x+10}+\frac{x+19}{x+9}\)
\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}-\frac{x+19}{x+10}-\frac{x+19}{x+9}=0\)
\(\Leftrightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=0\)
Xét trường hợp \(x=0\)
\(\Rightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{10}-\frac{1}{9}\right)=\left(x+19\right).0=0\)
( NHẬN )
\(\Rightarrow\) Nếu \(x\ne0\) thì \(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\ne0\)
Xét trường hợp x nguyên dương ta có :
\(\frac{1}{10}>\frac{1}{x+10}\)
\(\frac{1}{9}>\frac{1}{x+9}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}>0\)
Xét trường hợp x nguyên âm ta có :
\(\frac{1}{10}< \frac{1}{x+10}\)
\(\frac{1}{9}< \frac{1}{x+9}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+9}-\frac{1}{x+10}< 0\)
Từ đó suy ra :
\(x+19=0\)
\(\Rightarrow\)\(x=-19\)
Vậy \(x=0\) hoặc \(x=-19\)
Giải phương trình \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
Giải phương trình: \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
ĐKXĐ: x≠-10; x≠-9
Ta có: \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{10}{x+9}+\frac{9}{x+10}\)
Vậy: x=0
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)
\(\frac{\frac{5}{7}+\frac{5}{3}-\frac{5}{9}}{\frac{10}{7}+\frac{10}{3}-\frac{10}{9}}\)= ?
= \(\frac{5\times\left(\frac{1}{7}+\frac{1}{3}-\frac{1}{9}\right)}{10\times\left(\frac{1}{7}+\frac{1}{3}-\frac{1}{9}\right)}\)
=\(\frac{5}{10}\)
=\(\frac{1}{2}\)