Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
oOo WOW oOo
Xem chi tiết
Trần Thanh Phương
1 tháng 5 2019 lúc 16:43

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Trần Thanh Phương
1 tháng 5 2019 lúc 16:48

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

Incursion_03
1 tháng 5 2019 lúc 17:20

\(M=\frac{4x+1}{x^2+3}\)

\(\Leftrightarrow Mx^2+3M=4x+1\)

\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)

*Nếu M = 0 thì x =  -1/4

*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                                                     \(\Leftrightarrow4-M\left(3M-1\right)\ge0\)

                                                    \(\Leftrightarrow4-3M^2+M\ge0\)

                                                     \(\Leftrightarrow-1\le M\le\frac{4}{3}\)

ABCXYZ
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2020 lúc 11:28

\(M=\frac{12x+3}{3\left(x^2+3\right)}=\frac{4\left(x^2+3\right)-4x^2+12x-9}{3\left(x^2+3\right)}=\frac{4}{3}-\frac{\left(2x-3\right)^2}{3\left(x^2+3\right)}\le\frac{4}{3}\)

\(\Rightarrow M_{max}=\frac{4}{3}\) khi \(x=\frac{3}{2}\)

\(M=\frac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}=-1+\frac{\left(x+2\right)^2}{x^2+3}\ge-1\)

\(M_{min}=-1\) khi \(x=-2\)

Khách vãng lai đã xóa
Miki Thảo
Xem chi tiết
Đỗ Hồng Ngọc
Xem chi tiết
Thanh Tùng DZ
25 tháng 5 2019 lúc 15:17

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

bạch thục quyên
Xem chi tiết
Osi
1 tháng 5 2018 lúc 21:24

M=(8x+3)/(4x^2+1) 
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1) 
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1 
=> min M = -1 khi x = -1 
mặt khác: 
M = -1 + (2x +2)^2/(4x^2 +1) 
M = 4 - 5 + (2x +2)^2/(4x^2 +1) 
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1) 
M = 4 - (16x^2 - 8x +1)/(4x^2 +1) 
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4 
=> max M = 4 khi x = 1/4 

Trần Huyền
Xem chi tiết
Đào Thu Hiền
26 tháng 8 2020 lúc 16:00

Đặt A=\(\frac{3-4x}{x^2+1}\)

*Tìm GTNN:

A = \(\frac{3-4x}{x^2+1}\) = \(\frac{x^2-4x+4-x^2-1}{x^2+1}=\frac{\left(x-2\right)^2-\left(x^2+1\right)}{x^2+1}\) = \(\frac{\left(x-2\right)^2}{x^2+1}-1\)

\(\frac{\left(x-2\right)^2}{x^2+1}\ge0\) ∀ x => \(\frac{\left(x-2\right)^2}{x^2+1}-1\) ≥ -1 ∀ x hay A ≥ -1 ∀ x

Dấu "=" xảy ra ⇔ x - 2 = 0 ⇔ x = 2

Vậy minA = -1 ⇔ x = 2

*Tìm GTLN:

A = \(\frac{3-4x}{x^2+1}\) = \(\frac{-4x^2-4x-1+4x^2+4}{x^2+1}=\frac{-\left(2x+1\right)^2+4\left(x^2+1\right)}{x^2+1}\)=\(\frac{-\left(2x+1\right)^2}{x^2+1}+4\)

\(\frac{-\left(2x-1\right)^2}{x^2-1}\) ≤ 0 ∀ x => \(\frac{-\left(2x+1\right)^2}{x^2+1}+4\) ≤ 4 ∀ x hay A ≤ 4 ∀ x

Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = \(\frac{-1}{2}\)

Vậy maxA = 4 ⇔ x = \(\frac{-1}{2}\)

lê thị hương giang
Xem chi tiết
Phạm Nguyễn Tất Đạt
22 tháng 4 2018 lúc 20:42

\(M=\dfrac{4x+1}{x^2+3}\)

\(M+1=\dfrac{4x+1}{x^2+3}+\dfrac{x^2+3}{x^2+3}\)

\(M+1=\dfrac{x^2+4x+4}{x^2+3}=\dfrac{\left(x+2\right)^2}{x^2+3}\ge0\)

\(\Rightarrow M\ge-1\Leftrightarrow x=-2\)

Vậy MINM=-1<=>x=-2

Phạm Nguyễn Tất Đạt
22 tháng 4 2018 lúc 20:48

C2:\(M=\dfrac{4x+1}{x^2+3}\)

\(\Leftrightarrow Mx^2+3M=4x+1\)

\(\Leftrightarrow Mx^2-4x+3M-1=0\left(1\right)\)

+)Xét M=0=>\(x=\dfrac{-1}{4}\)

+Xét \(M\ne0\)

=>Để pt(1) có nghiệm thì \(\Delta'=\left(-2\right)^2-M\left(3M-1\right)\ge0\)

\(\Leftrightarrow4-3M^2+M\ge0\)

\(\Leftrightarrow-1\le M\le\dfrac{4}{3}\)

\(\Rightarrow MINM=-1\Leftrightarrow x=-2\)

\(MAXM=\dfrac{4}{3}\Leftrightarrow x=\dfrac{3}{2}\)

Nguyễn Thị Ngọc Thơ
22 tháng 4 2018 lúc 20:41

Ta có : \(M=\dfrac{4x+1}{x^2+3}\)

\(=\dfrac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}\)

\(=-1+\dfrac{\left(x+2\right)^2}{x^2+3}\)

\(\dfrac{\left(x+2\right)^2}{x^2+3}\ge0\) \(\Rightarrow M\ge-1\)

Dấu ''='' xảy ra \(\Leftrightarrow\) x = - 2

Vậy Min M = -1 \(\Leftrightarrow x=-2\)

Trườngg Sơnn
Xem chi tiết
Trườngg Sơnn
21 tháng 10 2018 lúc 18:45

giup mik vs

Trườngg Sơnn
21 tháng 10 2018 lúc 21:09

help me

Law Trafargal
Xem chi tiết
Phạm Minh Quang
10 tháng 10 2019 lúc 0:35

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi