Cho \(a,b,c\ge0,a+b+c\le3\) .Tim GTNN cua bieu thuc:
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
tim gtnn cua bieu thuc
B=\(\frac{a}{1+b-a}+\frac{b}{1+b-c}+\frac{c}{1+a-c}\)
(a,b,c>0 thoa man a+b+c=1)
1) Cho bieu thuc: \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
a) Cho bieu thuc A= \(\frac{\sqrt{x}+4}{\sqrt{x}+2}\) ; voi cac cua bieu thuc A va B da cho, hay tim cac gia tri cua x nguyen de gia tri cua bieu thuc B(A;-1) la so nguyen
Cho a,b,c la cac so duong thoa man a+b+c=9.Tim gia tri nho nhat cua bieu thuc:
\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
Tim GTNN của \(C=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)với \(a\ge0,b\ge0,c\ge0\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le0\)
a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
1) Cho bieu thuc A=\(3+\frac{2}{x-1}\). Tinh gia tri cua bieu thuc A khi |2x-3|=1
2) Rut gon bieu thuc B=\(\frac{x}{x-1}\)-\(\frac{x-5}{x+1}\)-\(\frac{3-x}{1-x^2}\)
3) Tim cac gia tri nguyen cua x de bieu thuc \(\frac{B}{A}\)co gia tri nguyen duong
cho biet a,b,c >0 dieu kien \(a^2+b^2+c^2=1\)Tinh GTNN cua bieu thuc A = \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\)
\(A^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\left(b^2+c^2+a^2\right)=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\)
Áp dụng Côsi: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2\sqrt{\frac{a^2b^2}{c^2}.\frac{b^2c^2}{a^2}}=2\sqrt{b^4}=2b^2\)
Tương tự \(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge2c^2;\text{ }\frac{c^2a^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\)
\(\Rightarrow2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)=2\)
\(\Rightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge1\)
\(\Rightarrow A^2\ge1+2=3\)
\(\Rightarrow A\ge\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{\sqrt{3}}\)
tim GTNN cua bieu thuc
a) A=\(\sqrt{x}+1\)
b) B=\(\frac{1}{2}+\sqrt{x}\)
a, A >= 0
Dấu "=" xảy ra <=> x=0
Vậy GTNN của A = 1 <=> x=0
b, B >= 1/2
Dấu "=" xảy ra <=> x=0
Vậy GTNN của B = 1/2 <=> x=0
Tk mk nha
Câu a)
Ta có: \(A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0\)
Suy ra \(\sqrt{x}+1\ge1\)
Vậy A đạt GTNN là 1 tại x = 0 (tự giải x ra nha)
câu b) Tương tự
Thánh làm biếng chào bn :3
a, Ta có \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)
Dấu ' = ' xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy GTNN của A là 1 tại x = 0
b, Tương tự cau a
Gia su a,b,c la cacso thoa man a+b+c=259 va \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=15\). Khi do gia tri cua bieu thuc \(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)bang
Ta có
\(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=259.15\)
\(\Rightarrow Q=259.15-3=3885\)