(x+7)(3x-1)=49-x^2
tính
a)(3x-1)^2-(2x-1)(2x+1)
b)(3x-2)^2-3(2x+1)(x-2)-3x(x-1)
tìm x
a)(x+7)(3x-1)=x^2-49
b)5(x-3)-4=2(x-1)+7
Giải phương trình:
( x+7 )*( 3x-1 )-x^2+49=0
x^2-3x+1/x^2-3/x=-4
a)
Theo bài ra ta có :
\(\left(x+7\right)\left(3x-1\right)-x^2+49=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(x^2-49\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(\left(x-7\right)\left(x+7\right)\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1-x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+7=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-7\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;-7\right\}\)
Chúc bạn học tốt =))
a/
<=>(x+7)(3x-1)-(x^2-7^2)=0
<=>(x+7)(3x-1)-(x-7)(x+7)=0
<=>(x+7)(3x-1-x+7)=0
<=>(x+7)(2x+6)=0
<=>x+7=0 hoặc 2x+6=0
<=>x=-7 2x=-6
<=> x=-3
=>S (-7;-3)
Cho hỏi cái đề câu b là đây hả:
\(\frac{x^2-3x+1}{x^2}-\frac{3}{x}=-4\)
ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\)\(\frac{x^2-3x+1}{x^2}-\frac{3x}{x^2}=\frac{-4x^2}{x^2}\)
\(\Leftrightarrow\)\(x^2-3x+1-3x=-4x^2\)
\(\Leftrightarrow x^2+4x^2-6x+1=0\)
\(\Leftrightarrow5x^2-6x+1=0\)
\(\Leftrightarrow5x^2-5x-x+1=0\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\left[\begin{matrix}5x-1=0\Rightarrow x=0,2\\x-1=0\Rightarrow x=1\end{matrix}\right.\)
tính
a)(3x-1)^2-(2x-1)(2x+1)
b)(3x-2)^2-3(2x+1)(x-2)-3x(x-1)
tìm x
a)(x+7)(3x-1)=x^2-49
b)5(x-3)-4=2(x-1)+7
\(a.\left(x+7\right)\left(3x-1\right)=x^2-49\Leftrightarrow\left(x+7\right)\left(3x-1\right)=\left(x-7\right)\left(x+7\right)\Rightarrow3x-1=x-7\Rightarrow3x-x=-7+1\Rightarrow2x=-6\Rightarrow x=-3\)
Thực hiện phép tính :
a/ (x - 1)^2 - (4x + 3) (2 - x)
b/ (15x^3y^2 - 6x^2y^3) : 3x^2y^2 = (15x^3y^2 : 3x^2y^2) - (6x^2y^3 : 3x^2y^2) = 5x - 2y
c/\(\dfrac{x+7}{x-7}\) - \(\dfrac{x-7}{x+7}\) +\(\dfrac{4x^2}{x^2-49}\)
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
tìm x
a)(x+7)(3x-1)=x^2-49
b)5(x-3)-4=2(x-1)+7
tìm x
a)(x+7)(3x-1)=x^2-49
b)5(x-3)-4=2(x-1)+7
\(a,\left(x+7\right)\left(3x-1\right)=x^2-49\)
\(\left(x+7\right)\left(3x-1\right)-\left(x+7\right)\left(x-7\right)=0\)
\(\left(x+7\right)\left(3x-1-x+7\right)=0\)
\(\left(x+7\right)\left(2x+6\right)=0\)
\(\hept{\begin{cases}x+7=0\\2x+6=0\end{cases}}\)
\(\hept{\begin{cases}x=-7\\x=-3\end{cases}}\)
\(b,5\left(x-3\right)-4=2\left(x-1\right)+7\)
\(5x-15-4=2x-2+7\)
\(5x-19=2x+5\)
\(3x=24\)
\(x=8\)
a)9x2 – 49 = 0
b)(x – 1)(x + 2) – x – 2 = 0
c)(4x + 1)(x - 2) - (2x -3)(2x + 1) = 7
d)x(3x + 2) + (x + 1)2 – (2x – 5)(2x + 5) = 0
e)(x + 3)(x2 – 3x + 9) –x(x – 1)(x + 1) – 27 = 0
f)(4x-3)^2-3x(3-4x)=0
\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a) 9x2-49=0
(3x)2-72=0
<=> (3x-7)(3x+7)=0
th1: 3x-7=0
<=>3x=7
<=>x=\(\dfrac{7}{3}\)
th2: 3x+7=0
<=>3x=-7
<=>x=\(-\dfrac{7}{3}\)
1) (1-x)(5x+3)=(3x-7)(x-1)
2) (x-2)(x+1)=x2-4
3) 2x3+3x2-32x=48
4) x2+2x-15=0
5) 2x(2x-3)=(3-2x)(2-5x)
6) x3-5x2+6x=0
7) (x2-5)(x+3)=0
8) (x+7)(3x-1)=49-x2
\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)
\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)
\(< =>\left(1-x\right)\left(8x-4\right)=0\)
\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
\(\left(x-2\right)\left(x+1\right)=x^2-4\)
\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)
\(< =>-1\left(x-2\right)=0\)
\(< =>2-x=0< =>x=2\)
\(2x^3+3x^2-32x=48\)
\(< =>x^2\left(2x+3\right)-16\left(2x+3\right)=0\)
\(< =>\left(x^2-16\right)\left(2x+3\right)=0\)
\(< =>\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)
\(< =>\hept{\begin{cases}x=4\\x=-4\\x=-\frac{3}{2}\end{cases}}\)
giải phương trình
a) \(2^x=2^{3x-1}\)
b) \(7^{x-5}=49\)
c) \(3^{5x-3}=1\)
d) \(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\)
a.
\(2^x=2^{3x-1}\Leftrightarrow x=3x-1\)
\(\Rightarrow x=\dfrac{1}{2}\)
b.
\(7^{x-5}=49\Leftrightarrow x-5=log_749=2\)
\(\Rightarrow x=7\)
c.
\(3^{5x-3}=1\Rightarrow5x-3=log_31=0\)
\(\Rightarrow x=\dfrac{3}{5}\)
d.
\(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\Leftrightarrow7^{-5x}=7^{x+6}\)
\(\Leftrightarrow-5x=x+6\)
\(\Rightarrow x=-1\)