Thu gọn tổng sau:
B=\(\frac{2}{3}+\frac{2}{3^2}+\frac{2}{3^3}+...+\frac{2}{3^{1000}}\)
Thu gọn tổng .. \(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}.\)
Thu gọn:
\(B=\frac{\frac{1}{2}-\frac{1}{2}:\frac{3}{4}-\frac{3}{4}}{\frac{2}{3}-\frac{2}{3}:\frac{5}{6}-\frac{5}{6}}\)
\(B=\frac{\frac{1}{2}-\frac{1}{2}:\frac{3}{4}-\frac{3}{4}}{\frac{2}{3}-\frac{2}{3}:\frac{5}{6}-\frac{5}{6}}\)
\(B=\frac{\left(\frac{1}{2}-\frac{1}{2}\right):\left(\frac{3}{4}-\frac{3}{4}\right)}{\left(\frac{2}{3}-\frac{2}{3}\right):\left(\frac{5}{6}-\frac{5}{6}\right)}\)
\(B=\frac{0-0}{0-0}\)
Thu gọn
\(B=\frac{2^3-3^4-2^4.3^3}{2^5.3^4-2^6.3^3}\)
\(C=\frac{\frac{1}{2}-\frac{1}{2}:\frac{3}{4}-\frac{3}{4}}{\frac{2}{3}-\frac{2}{3}:\frac{5}{6}-\frac{5}{6}}\)
Thu gọn tổng sau:
A= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{99}}\)
\(\Rightarrow A=1-\frac{1}{2^{99}}\)
Chúc bn học tốt !!!!!!!
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(2A-A=1-\frac{1}{2^{99}}\)
\(A=1-\frac{1}{2^{99}}\)
\(A=\frac{2^{99}-1}{2^{99}}\)
Rút gọn
\(\frac{3-\frac{1}{5}+\frac{3}{20}}{2+\frac{1}{4}-\frac{3}{5}}\)
Tính
a/ \(\frac{3}{4}.\frac{8}{9}.\frac{15}{10}....\frac{9999}{1000}\)
b/ \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
Tính
a)
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100}\\ \)
\(=\left(\frac{1.2.3...99}{2.3...100}\right).\left(\frac{3.4.5...101}{2.3.4...100}\right)\\ =\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
b)
\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\\ < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\\ \)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\)
Rút gọn :
a/ \(A=\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)
b/ \(B=\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)...\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{2012}\right)}\)
Giải các phương trình sau:
b.
\(\frac{{x + 5}}{3} = 1 - \frac{{x - 2}}{4}\);
\(\frac{{x + 5}}{3} = 1 - \frac{{x - 2}}{4}\)
\(\frac{{\left( {x + 5} \right).4}}{{3.4}} = \frac{{12}}{{12}} - \frac{{\left( {x - 2} \right).3}}{{4.3}}\)
\(\frac{{4x + 20}}{{12}} = \frac{{12}}{{12}} - \frac{{3x - 6}}{{12}}\)
\(4x + 20 = 12 - \left( {3x - 6} \right)\)
\(4x + 20 = 12 - 3x + 6\)
\(4x + 3x = 12 + 6 - 20\)
\(7x = - 2\)
\(x = \left( { - 2} \right):7\)
\(x = \frac{{ - 2}}{7}\)
Vậy phương trình có nghiệm là \(x = \frac{{ - 2}}{7}\).
a, Thu gọn đơn thức sau và chỉ ra phần hệ số, phần biến; \(-\frac{2}{3}xy^2.\left(-3xy\right)^2\)
b, Tính tổng; \(\frac{1}{2}xy^2+\frac{1}{3}xy^2-\frac{1}{6}xy^2\)
a) \(-\frac{2}{3}xy^2.\left(-3xy\right)^2=-\frac{2}{3}xy^2\left(-3\right)^2x^2y^2\)
\(=-\frac{2}{3}.9\left(x^2x\right)\left(y^2y^2\right)=-6x^3y^4\). Từ đó có
Hệ số : \(6\) vì nếu hệ số là -6 thì trong biểu thức phải là ( -6 ) và biến \(x^3y^4\)
b) \(\frac{1}{2}xy^2+\frac{1}{3}xy^2-\frac{1}{6}xy^2=\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{6}\right)xy^2\)
\(=\left(\frac{5}{6}-\frac{1}{6}\right)xy^2=\frac{4}{6}xy^2=\frac{2}{3}xy^2\). Vậy ta tính được giá trị biểu thức
Ôí chồi chồi chồi !
Cái j mà hệ số lak 6 đấy .... hệ số lak -6 nhá Minh
Mà nếu mà cậu viết : \(-\frac{2}{3}.9\left(x^2x\right)\left(y^2y\right)\)
Thì nên tống nó vào ngoặc ko lại như :
8 : 2 ( 2 + 2 ) đấy !
THU GỌN BIỂU THỨC SAU
\(\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\)