tìm hai đa thức f(x) và g(x) thỏa mãn biểu thức sau
f(x)+g(x)= 2x^4+5x^2-3x^2
f(x)-g(x)=x^4-x^2+2x
Cho hai đa thức
f ( x ) = x 3 - 3 x 2 + 2 x - 5 + x 2 , g ( x ) = - x 3 - 5 x + 3 x 2 + 3 x + 4 .
b. Tính f(x) + 2g(x) và 2f(x) - g(x)
b. Ta có f(x) + 2g(x)
= x3 - 2x2 + 2x- 5 + 2(-x3 + 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + (-2x3) + 6x2 - 4x + 8
=-x3 + 4x2 - 2x + 3 (0.5 điểm)
2f(x) - g(x) = x3 - 2x2 + 2x- 5 - 2(-x3+ 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + 2x3 - 6x2 + 4x - 8
= 3x3 - 8x2 + 6x - 13 (0.5 điểm)
Cho hai đa thức f(x) = 2x^4+5x^3-x+8 và g(x) =x^4-x^2+3x+9. Tìm đa thức h(x) sao cho:
a)f(x) - h(x) = g(x).
b) h(x) - g(x) =f(x)
Ta có:\(f\left(x\right)-h\left(x\right)=g\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8-x^4-x^2-3x-9\)
\(=x^4+5x^3+x^2-4x-1.\)
Vậy, đa thức cần tìm là: \(h\left(x\right)=x^4+5x^3+x^2-4x-1.\)
Ta có: \(h\left(x\right)-g\left(x\right)=f\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)+\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8+x^4-x^2+3x+9\)
\(=3x^4+5x^3-x^2+2x+17\)
Vậy, đa thức cần tìm là:\(h\left(x\right)=3x^4+5x^3-x^2+2x+17.\)
Bài 1. Cho hai đa thức
f (x)= -2x^4-3x^3+4x^4-x^2+5x+3x^2+5x^3+6 g (x)= x^4-x^3+x^2-5x-x^3-2x^2+3
a) Thu gọn và sắp xếp đa thức f (x) và g (x) theo lũy thừa giảm dần của biến; cho biết bậc, hệ
số cao nhất, hệ số tự do của mỗi đa thức.
b) Tìm các đa thức h (x) và k (x), biết
h (x)= f (x)+ g (x) k (x)= f (x)-2g (x)-4x^2
c) Tính giá trị của đa thức f (x) khi x là số nguyên, thỏa mãn k (x)= 0.
d) Tìm giá trị nhỏ nhất của đa thức h (x) CHỈ CẦN LÀM CÂU c,d THÔI, a,b ko cần phải làm
Bài 2. (2.0 điểm)
a) Tìm tất cả các giá trị nguyên của biến x để biểu thức sau nhận
giá trị nguyên M= 9x+5/3x-1
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
5 Cho đa thức f(x)=x^5-4x^4-2x^2-7; g(x)=-2x^5+6x^4-2x^2+6
Tính f(x)+g(x); f(x)-g(x)
b) Cho đa thức f(x)=5x^4+7x^3-6x^2+3x-7 ; g(x)=-4x^4+2x^3-5x^2+4x+5
Tính f(x)+g(x) ; f(x)-g(x)
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
Cho hai đa thức: f(x)= 5x^4+x^3-x+11+x^4-5x^3
g(x)2x^2+3x^4+9-4x^2-4x^3+2x^4-x
a) Thu gon và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tính h(x)=f(x)-g(x)
c) Chứng tỏ rằng đa thức h(x) không có nghiêm
a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)
\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)
\(=6x^4-4x^3-x+11\)
Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)
\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)
\(=5x^4-4x^3-2x^2-x+9\)
b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)
\(=x^4+2x^2+2\)
c) Ta có: \(x^4\ge0\forall x\)
\(2x^2\ge0\forall x\)
Do đó: \(x^4+2x^2\ge0\forall x\)
\(\Leftrightarrow x^4+2x^2+2\ge2>0\forall x\)
Vậy: Đa thức h(x) không có nghiệm(Đpcm)
Câu 1: Cho f(x) = −2x
4 + 3x
3 − 4x
2 + x − 7 và g(x) = −x
4 + 2x
3 − 3x
2 − x
3 + 3x
4 − 17. Khi
đó M(x) = f(x) + g(x)
Câu 2: Cho đa thức f(x) = −x
4 + 2x
3 − 5x
2 + 7x − 3 và g(x) = −3x
4 + 2x
3 − 7x + 5. Biết
M(x) = f(x) − g(x). Tính M(1) =?
Bài 2: Cho f(x) = x2- 2x - 5x4+6 và g(x)= x3 - 5x4 + 3x2 -3
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến .
b) Tính f(x) + g(x) và f(x) - g(x)
c)Chứng tỏ rằng x=1 là nghiệm của đa thức f(x)
d) Tìm đa thức h(x). Biết h(x) + f(x) - g(x) = -2x2- x +9
e)Tim nghiệm cả đa thức h(x)
Cho 2 đa thức :
f(x) +g(x) = 2x^4 + 5x^2 - 3x
f(x) - g(x) = x^4 - x^2 +2x
Tìm f(x) và g(x)
Xét [\(f\left(x\right)+g\left(x\right)\)]+[\(f\left(x\right)-g\left(x\right)\)]=\(\left[2x^4+5x^2-3x\right]\)+\(\left[x^4-x^2+2x\right]\)
\(2f\left(x\right)=2x^4+5x^2-3x+x^4-x^2+2x\)
\(2f\left(x\right)=3x^4+4x^2-x\)
\(\Rightarrow f\left(x\right)=\dfrac{3x^4+4x^2-x}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^4+2x^2-\dfrac{1}{2}x\)
Xét \(\left[f\left(x\right)+g\left(x\right)\right]-\left[f\left(x\right)-g\left(x\right)\right]=\)\(\left[2x^4+5x^2-3x\right]\)\(-\)\(\left[x^4-x^2+2x\right]\)
\(2g\left(x\right)=\)\(2x^4+5x^2-3x-x^4+x^2-2x\)
\(2g\left(x\right)=x^4+6x^2-5x\)
\(\Rightarrow g\left(x\right)=\dfrac{x^4+6x^2-5x}{2}\)
\(\Rightarrow g\left(x\right)=\dfrac{1}{2}x^4+3x^2-\dfrac{5}{2}x\)
cho f(x) =x2-2x-5x4+6 ; g(x) =x3-5x4+3x2-3
a) tìm đa thức h(x). biết h(x)+f(x)-g(x)=-2x2-x+9
b) tìm nghiệm của đa thức h(x)