Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thế Mạnh
Xem chi tiết
Hùng Hoàng
13 tháng 12 2015 lúc 22:53

\(\sqrt{28n^2+1}=k\)

\(A=2k+2=4\left(\frac{k+1}{2}\right)\)

\(k^2=28n^2+1\)

\(k^2-1=28n^2\)

\(\frac{k^2-1}{28}=n^2\)

Suy ra\(k^2-1\)chia hết cho 7 vì tử nguyên mẫu nguyên mà thương cũng nguyên nên tử chia hết cho mẫu mà 28 chia hết cho 7

\(k^2\equiv1\left(mod7\right)\)

\(k\equiv1\)(mod7)

k-1 chia hết cho 7

Có \(n^2=\frac{k^2-1}{28}=\left(\frac{k-1}{14}\right)\left(\frac{k+1}{2}\right)\)

2 số trên nguyên tố cùng nhau

mà tích là số chính phương nên 2 số trên đều là số chính phương

(k+1)/2 chính phương

\(A=4\left(\frac{k+1}{2}\right)\)tích 2 số cp nên a cp

 

Hùng Hoàng
Xem chi tiết
Nguyễn Quốc Khánh
13 tháng 12 2015 lúc 22:41

tick tui 2 cái cho đủ 200

gấukoala
Xem chi tiết
shitbo
13 tháng 6 2021 lúc 17:07

Bài này là đề tuyển sinh vào 10 của hà nội năm 2012 nếu mình không nhớ nhầm.

Bạn tìm trên mạng nhé.

Khách vãng lai đã xóa
gấukoala
13 tháng 6 2021 lúc 17:21

Không thấy bạn ơi

Khách vãng lai đã xóa
thánh yasuo lmht
Xem chi tiết
Đinh Đức Hùng
7 tháng 2 2017 lúc 17:27

Đặt \(M=2+2\sqrt{12n^2+1}\)

Để M là số nguyên thì 12n2 + 1  là số chính phương lẻ 
Đặt 12n2 + 1 = (2k -1)2   (k \(\in\) N)

<=> 12n2 + 1 = 4k- 4k +1

<=> 12n2 = 4k2 - 4k 

<=> 3n2 = k(k - 1)

=> k(k - 1) chia hết cho 3 => k chia hết cho 3 hoặc k - 1 chia hết cho 3

TH1 : k ⋮ 3 => n=(\(\frac{k}{3}\)).(k - 1)     Mà (\(\frac{k}{3}\) ; k-1 )= 1 nên đặt \(\frac{k}{3}\) = x2 => k = 3x2

  và đặt k - 1 = y=> k = y2 +1

  => 3x= y2 + 1 = 2 ( mod 3)

  Vô lý vì 1 số chính phương chia cho 3 có số dư là 0 hoặc 1

TH2 : k - 1 ⋮ 3: ta có :

  => n2 = \(\frac{k\left(k-1\right)}{3}\)     Mà ( k; (\(\frac{k-1}{3}\)) =1 nên đặt k = z2 

=> M = 2 + 2(2k - 1) = 4k = 4z2 =(2z)2 là 1 số chính phương 

 => M là một số chính phương ( đpcm )

Trương Tuấn Nghĩa
28 tháng 4 2017 lúc 18:10

\(2+2\sqrt{12n^2+1}\in Z^+\Rightarrow2\sqrt{12n^2+1}\in Z^+\Rightarrow\sqrt{12n^2+1}\in Q\)

\(\Rightarrow\sqrt{12n^2+1}=m\in Z^+\Rightarrow12n^2=m^2-1⋮4\Rightarrow m=2k+1,k\in Z\)

\(12n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\Rightarrow3n^2=k\left(k+1\right)⋮3\)hoặc \(k+1⋮3\)

TH1: \(k=3q,q\in Z\Rightarrow3n^2=3q\left(q+1\right)\Rightarrow n^2=q\left(q+1\right)\)

Vì \(\left(q,3q+1\right)=1\Rightarrow\hept{\begin{cases}q=a^2\\3q+1=b^2\end{cases}\Rightarrow3q^2+1=b^2}\)

Ta có: \(2+2\sqrt{12n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.3q=4+12q^2=4b^2\)(CMT)

Ta có đpcm

TH2(tương tự):\(k=3q+1\)

ngonhuminh
7 tháng 2 2017 lúc 17:57

Bước 1: mình chưa hiểu \(M=2+2.\sqrt{12n^2+1}\) Nguyên thì \(\sqrt{12n^2+1}\) phải lẻ nếu chẵn thì sao?

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 6 2021 lúc 17:55

\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)

TH1: \(a=b\) thì \(ab=a^2\) là SCP

TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)

\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP

Thơ Nụ =))
Xem chi tiết
Soorii_eun
Xem chi tiết
Hello
11 tháng 12 2022 lúc 16:07

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

Quốc Hưng
Xem chi tiết
Lê Ngọc Kiều Ly
Xem chi tiết
Phùng Khánh Linh
2 tháng 12 2016 lúc 19:50

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5