Bài 1. Chứng tỏ rằng : 1/2.4 + 1/4.6 + 1/6.8 +...+ 1/48.50 < 1/4
Bài 2.
a) Tính tổng S= 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110
b) Cho A= 2n+3/3n+2 . Tìm số nguyên n để A là số nguyên
GIÚP MÌNH NHA MÌNH ĐANG CẦN GẤP
a) Chứng tỏ rằng, với 2 số nguyên dương n và k ta có : 1/n.(n+k)=1/k.(1/n-1/n+k) b) Áp dụng tính : 1/2.4+1/4.6+1/6.8+...+1/2016.2018
b)Đặt A=\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+...+\(\dfrac{1}{2016.2018}\)
2A=\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+...+\(\dfrac{2}{2016.2018}\)
2A=\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{2016}\)-\(\dfrac{1}{2018}\)
2A=\(\dfrac{1}{2}\)-\(\dfrac{1}{2018}\)
2A=\(\dfrac{504}{1009}\)
⇒A=\(\dfrac{252}{1009}\)
bài 17: ko dùng máy tếnh hãy so sánh : A= 5^2020 + 1 phần 5^2021 +1 và b = 10 ^ 2019 +1/ 10^2020 +1
bài 18 :
a. tính giá trị biểu thức S= 6 phần 2.4 + 6 phần 4.6 + 6 phần 6.8 +... + 6 phần 98.100
b . Tìm số nguyên n để biểu thức A - 2 phần n - 1 có giá trị là số nguyên
18:
a: \(S=3\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)
=3*(1/2-1/4+1/4-1/6+...+1/98-1/100)
=3*49/100=147/100
b: Để A là số nguyên thì n-1 thuộc Ư(2)
=>n-1 thuộc {1;-1;2;-2}
=>n thuộc {2;0;3;-1}
Không dùng máy tinh bỏ túi.Tính hợp lí:
a,4/2.4+4/4.6+4/6.8+......+4/2012.2014
b,5/2.1+4/1.11+3/11.2+1/2.15+13/15.4
c,(2/3+2/7-1/14):(-1-3/7+3/28)
d,1/10+-1/20+-1/30+-1/42+-1/56+-1/72+-1/90
a,A=4/2.4+4/4.6+4/6.8+......+4/2012.2014
\(\Rightarrow\frac{1}{2}A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{2012\cdot2014}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2012}-\frac{1}{2014}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{2014}\)
\(\Rightarrow A=1-\frac{1}{1007}\)
\(\Rightarrow A=\frac{1006}{1007}\)
1) Chứng minh rằng với mọi số nguyên n thì phân số 3n+7 / 4n+9 là phân số tối giản
2) Tính (5/6 + 19/20 + 41/42 + 71/72 + 109/110 ) - (3/2 +13/12 + 31/30 + 57/56 + 91/90 )
3) tính ( 3/429 -1/1.3 ) (3/429 - 1/3.5 ) ( 3/429 - 1/5.7 ) ( 3/429 - 1/99.101 )
bài 1 a) cho A = 1+3^2 +3^4+3^6+...+3^2004+3^2006
chứng minh A chia cho 13 dư 10
b)chứng tỏ rằng 2n+1 và 2n+3 (n thuộc N ) là hai số nguyên tố cùng nhau
bài 2 tính tổng S=1^2+2^2+3^2+...+100^2
a) D= 4/2.4+4/4.6+4/6.8+...+4/2008.2010
b)Tìm các giá trị nguyên của n để phân số A= 3n+2/n-1
ai nhanh mình Tick nha!
Ta có : D = \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
\(\Leftrightarrow D=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\right)\)
\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(\Leftrightarrow D=1-\frac{1}{1005}=\frac{1004}{1005}\)
D = 2.(2/2.4+2/4.6+...+2/2008.2010)
=2(1/2-1/4+1/4-1/6+......+1/2008-1/2
=2(1/2-1/2010)
=2.502/1005
=1004/1005
A=3n+1/n-1=3(n-1)+4/n-1=3+4/n-1
Để A là số nguyên thì 4/n-1 là số nguyên
=>n-1 thuộc Ư(4)=1,-1,2,-2,4,-4
=>n thuộc (2,0,3,-1,5,-3)
a) D= 4/2.4+4/4.6+4/6.8+...+4/2008.2010
b)Tìm các giá trị nguyên của n để phân số A= 3n+2/n-1
ai nhanh mình Tick nha!
Ta có : \(A=\frac{3n+2}{n-1}+\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên thì n - 1 thuộc Ư(5) = {-1;-5;1;5}
n - 1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
A = \(3+\frac{5}{n-1}\) | 2 | -2 | 8 | 4 |
1
a) Tìm tất cả các số tự nhiên n để 1+2+2^ +... + 2^2n-1 là số nguyên tố. b) Chứng minh rằng tồn tại 2023 số tự nhiên liên tiếp mà tất cả các số đều là hợp số. Nêu nhận định tổng quát và chứng minh nhận định đó. Câu 2.
a) Chứng tỏ rằng S=1+3+3^2 +...+3^2022 không là số chính phương.
b) Tìm số chính phương n mà tổng các chữ số của n bằng 2024.
a, cho hai phân số 1/n và 1/ n+1 n E Z và lớn hơn 0 chứng tỏ rằng tích của hai phân số bằng hiệu của chúng
b, áp dụng kết quả trên để tính giá tỉ biểu thức sau
A= 1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6+1/6*1/7+1/7*1/8+1/8*1/9
B=1/20+1/30+1/42+1/56+1/72+1/90+1/110
anh ê chơi thâm vừa thôi à nha
AK EM BẢO ANH NÈ EM NHỜ ANH CHỨ KO PHẢI EM TRẢ LỜI HỘ ANH