So sánh \(\frac{21}{22}và\frac{2011}{2012}\)
so sánh:
b,\(\frac{21}{22}và\frac{2011}{2012}\)
c,\(\frac{31}{95}và\frac{2012}{6035}\)
a) ta có: \(1-\frac{21}{22}=\frac{1}{22};1-\frac{2011}{2012}=\frac{1}{2012}\)
\(\Rightarrow\frac{1}{22}>\frac{1}{2012}\)
\(\Rightarrow1-\frac{21}{22}>1-\frac{2011}{2012}\Rightarrow\frac{21}{22}< \frac{2011}{2012}\)
b) ta có: \(\frac{31}{95}=0,32;\frac{2012}{6035}=0,33\)
=> 0,32 < 0,33
=> 31.95 < 2012/6035
b) \(\frac{21}{22}\)< \(\frac{2011}{2012}\)
c) \(\frac{31}{95}\) < \(\frac{2012}{6035}\)
chúc bạn học tốt.
a) So sánh P và Q
Biết\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) và\(\frac{2010+2011+2012}{2011+2012+2013}\)
b) Tìm hai số tự nhiên a và b, biết: BCNN(a,b)=420;ƯCLN(a,b)=21 và a+21=b
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q
Vậy P > Q
b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b
\(\Rightarrow a.b=420.21=8820\)
Ta có:
\(ab=8820\)
\(a+21=b\Rightarrow b-a=21\)
Hai số cách nhau 21 mà có tích là 8820 là 84 , 105
Mà a + 21 = b suy ra a < b
Vậy a = 84 ; b = 105
a,-Cách khác:
-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)
\(\Rightarrow P>Q\)
so sánh:21/22 và 2011/2012
so sánh 21/22 và 2011/2012
ta có: \(1-\frac{21}{22}=\frac{1}{22}\)
\(1-\frac{2011}{2012}=\frac{1}{2012}\)
\(\Rightarrow\frac{1}{22}>\frac{1}{2012}\)
\(\Rightarrow1-\frac{21}{22}>1-\frac{2011}{2012}\)
\(\Rightarrow\frac{21}{22}< \frac{2011}{2012}\)
So sánh
21/22 và 2011/2012
a, A = 20 + 21 + 22 + 23 + -.+ 22010 và B = 22011 -1
b, A = 2009.2011 và B = 20102
c, A = 1030 và B = 2100
d, A = 333444 và B = 444333
e, A = 3450 và B = 5300
Ta có :
\(\frac{21}{22}=1-\frac{1}{22}\)
\(\frac{2011}{2012}=1-\frac{1}{2012}\)
Mà \(\frac{1}{22}>\frac{1}{2012}\)
\(\Rightarrow1-\frac{1}{22}< 1-\frac{1}{2012}\)
\(\Rightarrow\frac{21}{22}< \frac{2011}{2012}\)
So sánh P và Q biết
P=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) và Q=\(\frac{2010+2011+2012}{2011+2012+2013}\)
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
So sánh : \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\) và \(\frac{2016}{2017}\)
Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)
\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)
\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)
Mà \(\frac{2016}{2017}< 1\)
Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)
dấu cần điền là : >
Vì kết quả của phép tính vế thứ 1 là 1
và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn
mình ko hiểu lắm sao tự nhiên lại đang \(\frac{1}{2010.\left[2010+2011+2012\right]}\)lại sang luôn \(\frac{\frac{1}{2010}}{2010+2011+2012}\)
CHO : \(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
VÀ : \(B=\frac{2010+2011+2012}{2011+2012+2013}\)
SO SÁNH A VÀ B
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
So sánh P và Q biết:
P=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
Q = \(\frac{2010+2011+2012}{2011+2012+2013}\)
Ta có:
Q=2010/2011+2012+2013+2011/2011+2012+2013+2012/2011+2012+2013
Mà 2010/2011+2012+2013<2010/2011
2011/2011+2012+2013<2011/2012
2012/2011+2012+2013<2012/2013
=>Q<P