Cho tam giác ABC vuông tại A có đường cao AH.Trên nửa mặt phẳng bờ chứa điểm A. Kẻ Cx vuông góc với AC tại C.Tia pg góc abc cắt AC tại D.so sánh AD và DC
Cho tam giác ABC vuông ở A có đường cao AH. Trên nửa mặt phẳng có bờ BC chứa điểm A, kẻ tia Cx vuông góc với AC tại C. Tia phân giác của góc ABC cắt AC ở D, và cắt tia Cx tại E.
a) So sánh CE và AB?
b) So sánh AD và DC?
c) Trên nửa mặt phẳng có bờ BC chứa điểm A lấy điểm K sao cho KB=KC. Chứng minh rằng BK, KH và AH là độ dài ba cạnh của một tam giác vuông?
Cho tg ABC vuông tại A có đường cao AH. Trên nửa mặt phẳng có bờ BC chứa điểm A, kẻ tia Cx vuông góc với AC tại C. Tia phân giác của góc ABC cắt AC ở D, và cắt tia Cx tại E.
a.So sánh CE và AB
b.So sánh AD và DC
c.Trên nửa mặt phẳng có vờ BC chưa điểm A lấy điểm K sao cho KB=KC. Chứng minh rằng BK,KH và Ah là độ dài 3 cạnh của 1 tg vuông
Cho tam giác ABC có góc A < 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ AD vuông góc với AB và AD = AB, trên nửa mặt phẳng bờ AC có chứa điểm B vẽ AE vuông góc với AC và AE = AC. Kẻ AH vuông góc với ED tại H. Chứng minh đường thẳng AH đi qua trung điểm của cạnh BC.
Bạn tham khảo tạm.
Gọi M là trung điểm BC. Trên tia đối tia MA lấy điểm F sao cho M là trung điểm AF. AM cắt EF tại K
Dễ dàng ∆ABM = ∆FCM (c.g.c)
=> ^ABM = ^FCM (2 góc t.ứ)và AB = FC
Mà 2 góc này ở vị trí slt.
=> AB // FC.
=>^BAC + ^ACF = 180° (tcp).
Lại có:
^EAC = ^DAB = 90°
=> ^EAC + ^DAB = 180°
=> ^EAB + ^BAC + ^BAC + CAD = 180°
=> ^BAC + ^EAD = 180°
Do đó ^EAD = ^ACF.
Xét ∆ACF và ∆EAD có:
AC = AE (GT)
^ACF = ^EAD
^CF = AD (=AB)
=>∆ACF = ∆EAD (c.g.c)
=> ^CAK = ^AED (2 góc t/ứ)
=> ^CAM+ ^EAM = ^AED + ^EAM
=> ^AED + ^EAM = ^CAE=90°
=> ^AKE = 90°
=> AM vuông góc vs DE
Mà AH vuông góc DE.
=> Đpcm
B1:cho tam giác ABC, A= 90 đọ. AB= AC, qua A kẻ đường thẳng xy. Vẽ BD vuông góc xy. Tại D, CE vuông góc với xy tại E.CMR:
a) tam giác ABD= tam giác ACE
b) DE= BD+ CE
B2:Cho tam giác ABC có góc A= 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ AD vuông góc với AB và AD= AB. Trên nửa mặt phẳng bờ AC có chứa điểm B. Vẽ AE vuông góc với AC. Kẻ AH vuông góc với ED tại H. CMR: đường thẳng AH đi qua chung điểm cạnh BC.
B1:cho tam giác ABC, A= 90 đọ. AB= AC, qua A kẻ đường thẳng xy. Vẽ BD vuông góc xy. Tại D, CE vuông góc với xy tại E.CMR:
a) tam giác ABD= tam giác ACE
b) DE= BD+ CE
B2:Cho tam giác ABC có góc A= 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ AD vuông góc với AB và AD= AB. Trên nửa mặt phẳng bờ AC có chứa điểm B. Vẽ AE vuông góc với AC. Kẻ AH vuông góc với ED tại H. CMR: đường thẳng AH đi qua chung điểm cạnh BC.
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD
a bài này học rùi!! dễ lắm!! đại trà cũng làm được
Cho tam giác ABC có góc A < 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ AD vuông góc với AB và AD = AB, trên nửa mặt phẳng bờ AC có chứa điểm B vẽ AE vuông góc với AC và AE = AC. Kẻ AH vuông góc với ED tia AH cắt BC tại M. chứng minh M là trung điểm của BC
cho tam giác ABC vuông tại A có góc B = 55 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Cx vuông góc với AC. Trên tia Cx lấy điểm D sao cho CD = AB.
1. Tính số đo góc ACB
2. Chứng minh tam giác ABC = tam giác CDA và AD//BC
3. Kẻ AH vuông góc BC tại H, CK vuông góc AD tại K. Chứng minh BH = DK
4. Gọi I là trung điểm của AC. Chứng mình ba điểm H, I, K thẳng hàng
Cho tam giác ABC. Trên nửa mặt phẳng chứa C có bờ AB vẽ AB vuông góc AB, AB =AE. Trên nửa mặt phẳng chứa B có bờ AC vẽ AFvuông góc với AC, AF=AC. Kẻ AD vuông góc với BC. AD giao với EF tại M.
a, CM FB vuông góc với EC tại I
b, Từ A kẻ đường thẳng vuông góc với EF cắt BC tại K. CM tam giác ACK = tam giác FAM
c, CM M là trung điểm của È
Cho tam giác ABC (A<90 độ). Trên nửa mặt phẳng bờ AB chứa điểm C vẽ AD vuông góc với AB và AD=AB. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ AE vuông góc với AC và AE=AC. Kẻ AH vuông góc với ED tại H. CMR đường thẳng AH đi qua trung điểm của BC.