Cho tam giác abc vuông tại a góc c=30 độ đường cao ah.trên cạnh bc lấy d sao cho bd=ba.gọi dk là đuờngcao của tam giác abd(k thuộc ac).chứng minh
a,ad là phân giác của góc hac
b,ac-ah<bc-ab
Cho tam giác ABC vuông tại A. Vẽ đường cao AH.Trên cạnh BC lấy điểm D sao cho BD = BA
a. Chứng minh góc BAD = góc ADB
b. chứng minh AD là tia phân giác của góc HAC
c. vẽ DK vuông góc với AC ( K thuộc AC ) . Chứng minh AK=AH
MONG MN GIÚP MIK , MAI MIK THI RỒI.
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
hay \(\widehat{BAD}=\widehat{BDA}\)
b: Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của góc HAC
1.cho tam giác ABC vuông tại A.Vẽ đường cao AH.Trên cạnh BC lấy điểm D sao cho BD = BA.
a) chứng minh : tia AD là tia phân giác của góc HAC.
b) Vẽ DK vuông góc AC (K thuộc AC).C/M: AK = AH.
c) C/m:AB + AC < BC + AH
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH H thuộc BC. Trên cạnh BC lấy điểm D sao cho BD = BA
a/ C/m: Tam giác ABD cân và AD là tia phân giác của góc HAC
b/ Kẻ DK vuông góc với AC (K thuộc AC ) Chứng minh AK = AH
Cho tam giác ABC vuông tai A. Vẽ đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=BA
a) CMR AD là tia phân giác của góc HAC
b) Vẽ DK ⊥ AC (K ∈ AC) CMR AK = AH
Lời giải:
a) Vì $BA=BD$ nên tam giác $BAD$ cân tại $B$
Do đó:
$\widehat{HAD}=\widehat{BAD}-\widehat{BAH}=\widehat{BDA}-(90^0-\widehat{ABH})=\widehat{BDA}-\widehat{C}=\widehat{DAC}$
$\Rightarrow AD$ là tia phân giác $\widehat{HAC}$
b) Xét tam giác vuông $AHD$ và $AKD$ có:
$\widehat{HAD}=\widehat{KAD}$ (theo phần a)
$AD$ chung
$\Rightarrow \triangle AHD=\triangle AKD$ (ch-gn)
$\Rightarrow AH=AK$ (đpcm)
Cho tam giác ABC vuông tại A. Vẽ đường cao AH.Trên cạnh BC lấy điểm D sao cho BD = BA
a, chứng minh: góc BAD = góc ADB
b, Chứng minh: AD là phân giác của góc HAC
c, Vẽ DK vuông góc AC ( K thuộc AC). Chứng minh: AK = AH
d, Chứng minh : AB + AC < BC + 2AH
cho tam giác ABC vuông tại A ,có góc C =30 độ , đường cao AH . Trên cạnh BC lấy điểm D sao cho BD=BA . gọi DK là đường cao của tam giác ADC (K thuộc AC ). Chứng minh :
AD là phân giác của góc HAC
tam giác HAK cân
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH H thuộc BC. Trên cạnh BC lấy điểm D sao cho BD = BA
a/ C/m: Tam giác ABD cân và AD là tia phân giác của góc HAC
b/ Kẻ DK vuông góc với AC (K thuộc AC) C/m AK = AH
Cho tam giác ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=BA
a, Chứng minh góc BAD = góc ADB
b, Chứng minh AD là phân giác của góc HAC
c, Vẽ DK vuông góc AC (K thuộc AC). Chứng minh AK = AH
b17
a: BA=BD
=>ΔBAD cân tại B
=>góc BAD=góc BDA
b: góc HAD+góc BDA=90 độ
góc CAD+góc BAD=90 độ
mà góc BAD=góc BDA
nên góc HAD=góc CAD
=>AD là phân giác của góc HAC
c: Xét ΔADH vuông tại H và ΔADK vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔADH=ΔADK
=>AH=AK
bài giải nè !
a: BA=BD
=>ΔBAD cân tại B
=>góc BAD=góc BDA
b: góc HAD+góc BDA=90 độ
góc CAD+góc BAD=90 độ
mà góc BAD=góc BDA
nên góc HAD=góc CAD
=>AD là phân giác của góc HAC
c: Xét ΔADH vuông tại H và ΔADK vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔADH=ΔADK
=>AH=AK
cho tam giác ABC vuông tại A. Vẽ đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BD
a, Chứng minh ; góc BAD=góc ADB
b, Chứng minh AS là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC (K thuộc AC).C/M AK=AH
d,chứng minh ; AB + AC <BC+ 2AH