Những câu hỏi liên quan
Lil Shroud
Xem chi tiết
Trần Minh Hoàng
8 tháng 1 2021 lúc 10:27

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

Bình luận (1)
t. oanh
23 tháng 5 2021 lúc 21:11

Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{​​}\text{​​}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)

Ta thấy: \(\text{​​}\text{​​}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)

             \(\text{​​}\text{​​}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)

Do đó: P \(\ge2+4+5=11\)

Vậy: P(min)=11  khi:  \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)

Bình luận (0)
Nguyễn Ngọc Anh
Xem chi tiết
Xích U Lan
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2021 lúc 21:55

Biểu thức này chỉ có max, ko có min

Bình luận (0)
HT2k02
13 tháng 4 2021 lúc 21:59

Cho phép mình giải max bài này ạ:

Ta có:

\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\overset{cosi}{\le}\dfrac{a+b+a+c}{2}\)

Tương tự: \(\sqrt{2b+ac}\le\dfrac{b+c+b+a}{2};\sqrt{2c+ab}\le\dfrac{c+a+c+b}{2}\)

\(\Rightarrow Q\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=4\)

Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{2}{3}\)

Bình luận (0)
Đặng Thị Thu Thảo
Xem chi tiết
Trần Minh Hoàng
22 tháng 1 2021 lúc 18:14

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

Bình luận (0)
tthnew
22 tháng 1 2021 lúc 18:21

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?

Bình luận (0)
Traan Dungx
Xem chi tiết
Cam Ngoc Tu Minh
12 tháng 8 2023 lúc 11:08

 

Ta có:

P = a + b + c a + b + a + b = 2(a + b) 2(-1) = -2

Ta cũng có:

P = a + b + c a + b + c - 2abc a + b + c - 2(-1)(-1)(-1) = -3

Vậy GTNN của P = -3 và GTLN của P = -2.

Bình luận (0)
Trần Anh Văn
Xem chi tiết
Trần Anh Văn
22 tháng 12 2020 lúc 6:15

ai đó trả lời hộ tớ với

Bình luận (0)
hung
Xem chi tiết
Đinh Đức Hùng
23 tháng 12 2017 lúc 22:04

Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)

\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)

\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
nub
19 tháng 8 2020 lúc 14:56

Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)

Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)

Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong

Bình luận (0)
 Khách vãng lai đã xóa
Kan
Xem chi tiết
Trần Thị Hà Giang
Xem chi tiết
Đinh Đức Hùng
7 tháng 7 2018 lúc 16:11

Ta có \(a^3+1+1\ge3\sqrt[3]{a.1.1}=3a\Leftrightarrow a^3\ge3a-2\) (Cosi)

Tương tự \(b^3\ge3b-2;c^3\ge3c-2\)

Cộng lại ta được  \(a^3+b^3+c^3\ge3\left(a+b+c\right)-6\)

Lại có \(a^3+b^3+c^3\ge3abc\) (Cosi)

Do đó \(2\left(a^3+b^3+c^3\right)\ge3\left(a+b+c+abc\right)-6=3.4-6=6\)

\(\Rightarrow a^3+b^3+c^3\ge3\) có GTNN là 3

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)