Cho s=1/20+1/21+1/22+...+1/199+1/200. Chứng minh s>9/10
CHO
S=\(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{199}+\frac{1}{200}\)
CHỨNG MINH RẰNG S>\(\frac{9}{10}\)
S = \(\frac{1}{20}+\frac{1}{21}...+\frac{1}{199}+\frac{1}{200}\) ( có 181 phân số )
=> S > \(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}+\frac{1}{200}\)
=> S > \(\frac{1}{200}.181\)
=> S > \(\frac{181}{200}\)> \(\frac{180}{200}\)= \(\frac{9}{10}\)
Vậy S > 9 / 10
GIÚP NHA , AI LÀM ĐƯƠC 1 NGÀY TK 3TK
S = \(\frac{1}{20}\)+ \(\frac{1}{21}\)+ ....+\(\frac{1}{200}\)có 181 p/s
mà \(\frac{1}{20}\)>\(\frac{1}{200}\)
.............
\(\frac{1}{199}\)>\(\frac{1}{200}\)
\(\frac{1}{200}\)=\(\frac{1}{200}\)
nên ta có S > \(\frac{1}{200}\)+ \(\frac{1}{200}\)+..... có 181 phân số \(\frac{1}{200}\)
vậy \(\frac{1}{200}\)*181=\(\frac{181}{200}\)mà \(\frac{181}{200}\)>\(\frac{9}{10}\)mà \(\frac{1}{20}\)+......+\(\frac{1}{200}\)(có 181 số)>\(\frac{1}{200}\)+\(\frac{1}{200}\)(có 181 p/s \(\frac{1}{200}\))>\(\frac{9}{10}\)
Vậy ==> S>\(\frac{9}{10}\)
S=1/20+1/21+...+1/200 . chứng minh s<9/10
Cho C = 1/20 + 1/21 + 1/22 + ... + 1/200. Chứng tỏ C > 9/10.
Đặt \(B=\frac{1}{20}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}< C=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{200}\)
Số các phân số \(\frac{1}{200}\)có trong \(B\)là :
( 200 - 21 ) :1 + 1 = 180 ( phân số )
Nên \(B=\frac{1}{20}+180.\frac{1}{200}=\frac{1}{20}+\frac{9}{10}>\frac{9}{10}\)
Do đó , \(C>B>\frac{9}{10}\)nên \(C>\frac{9}{10}\)
Vậy \(C>\frac{9}{10}\left(ĐPCM\right)\)
Cho C= 1/20+1/21+1/22+...+1/200
CMR C > 9/10
ta có C= 1/20 +1/21+1/22+...+1/200
C > 1/200 + 1/200 +1/200 +...+ 1/200(181 ps)
C > 181/200 > 180/200 = 9/10
=> C > 9/10
1)
\(Cho:\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh \(B>\frac{7}{12}\)
1)
Cho \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh: \(B>\frac{7}{12}\)
S=1/2.3/4.4/5...199/200.Chứng minh S^2 <1/201
Cho S= 1/21+1/22+...+1/35. Chứng minh rằng S>1/2
Easy!!
\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))
\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)
\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)
P/s: đpcm là điều phải chứng minh
Có \(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)
\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))
\(S=\dfrac{15}{29}>\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
Vậy S > \(\dfrac{1}{2}\)(đpcm)
a:Chứng tỏ rằng tổng sau lớn hơn 1
A= 1/10+1/11+1/12+...+1/99+1/100
b: Cho S= 1/21+1/22+...+1/35. Chứng minh rằng S>1/2