Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Itsuka Hiro
Xem chi tiết
Phạm Thị Kim Yến
25 tháng 3 2016 lúc 19:54

tinh chi vay

dang thi hai ly
Xem chi tiết
tran xuan quynh
22 tháng 3 2015 lúc 17:39

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

Phùng Đình Hiếu
2 tháng 8 2016 lúc 20:42

ban tran xuan quynh tra loi dung roi

trần quốc anh tú
9 tháng 8 2018 lúc 8:20

ko biét

Đặng Thị Phương Linh
Xem chi tiết
Từ Thức 14
9 tháng 1 2017 lúc 20:39

A=5+5^2+5^3+...+5^2013

A=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2011+2^2012+5^2013)

A=155+5^4*(5+5^2+5^3)+...+5^2011*(5+5^2+5^3)

A=155+5^4*155+...+5^2011*155

A=155*(5^4+...+5^2011) chia hết cho 155

tk mk nha

thanks

Soobin
Xem chi tiết
Nguyen Dieu Chau
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 12 2021 lúc 10:53

\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)

Quang Bùi
Xem chi tiết
Khanh
Xem chi tiết
Trên con đường thành côn...
26 tháng 8 2021 lúc 21:42

undefined

Trên con đường thành côn...
26 tháng 8 2021 lúc 21:44

undefined

Lấp La Lấp Lánh
26 tháng 8 2021 lúc 21:47

1) \(a^2x^2-a^2y^2-b^2x^2+b^2y^2=a^2\left(x^2-y^2\right)-b^2\left(x^2-y^2\right)=\left(x^2-y^2\right)\left(a^2-b^2\right)=\left(x-y\right)\left(x+y\right)\left(a-b\right)\left(a+b\right)\)

2) \(x^2-2014x+2013=\left(x-1007\right)^2-1006^2=\left(x-1007-1006\right)\left(x-1007+1006\right)=\left(x-2013\right)\left(x-1\right)\)

3) \(x^2-y^2+12y-36=x^2-\left(y-6\right)^2=\left(x-y+6\right)\left(x+y-6\right)\)

4) \(\left(x+2\right)^2-x^2+2x-1=\left(x+2\right)^2-\left(x-1\right)^2=\left(x+2-x+1\right)\left(x+2+x-1\right)=3\left(2x+1\right)\)

5) \(16x^2-y^2=\left(4x-y\right)\left(4x+y\right)\)

6) \(6x^2-11x+3=6\left(x-\dfrac{11}{12}\right)^2-\dfrac{49}{24}=6\left[\left(x-\dfrac{11}{12}\right)^2-\dfrac{49}{144}\right]=6\left(x-\dfrac{11}{12}-\dfrac{7}{12}\right)\left(x-\dfrac{11}{12}+\dfrac{7}{12}\right)=6\left(x-\dfrac{3}{2}\right)\left(x-\dfrac{1}{3}\right)=\left(2x-3\right)\left(3x-1\right)\)

huy luong van
Xem chi tiết

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Nguyễn Hồng Ngọc
Xem chi tiết
Phạm Lê Thiên Triệu
24 tháng 10 2018 lúc 17:17

a)n(n+2013)

xét 2 tr hp.

tr hp 1:n là số lẻ 

=>n+2013 là số chẵn

=>n(n+2013) là số chẵn =>n(n+2013) chia hết cho 2.

tr hp 2:nlà số chẵn

=>n(n+2013) là số chẵn=> n(n+2013) chia hết cho 2.

b)M=21+22+23+24+....+220

M=2.1+2.2+2.4+2.8 +25.1+25.2+25.4+25.8+.......+217.1+217.2+217.4+217.8

M=2(1+2+4+8)+25(1+2+4+8)+....+217(1+2+4+8)

M=2.15+25.15+....+217.15

=>M chiia hết cho 5

Thần Thần
31 tháng 10 2018 lúc 11:13

M = 2+2+23+24+.....+220 chứng tỏ rằng M chia hết cho 5

Số số hạng của tổng là :

(20-1) : 1 +1 = 20 ( số hạng )

Ta ghép 4 số vào 1 nhóm , như vậy có số nhóm là :

20 : 4 = 5 ( nhóm )

Ta có :

M = 2+22+23+24+24+.....+220

     = ( 2 + 22+23+24)+.....+(217+218+219+220)

     = 2.(1+2+3+4)+.....+217.(1+2+3+4)

     = 2.10+....217.10

      = (2+...+217 ) . 10 chia hết cho 5

Vậy ta có điều phải chứng minh.