cho hình bình hành ABCD ( góc A < góc B ). Gọi E là hình chiếu cảu C trên AD, H là hình chiếu của B trên AC. Chứng minh:
a) AB.AE=AC.AH
b) BC.AK=AC.HC
c) AB.AE+AD.AC=AC2
Cho hình bình hành ABCD góc (A<B) gọi E là hình chiếu của C trên AB k là hình chiếu của C trên AD, H là hình chiếu của B trên AC chứng minh rằng
a,AB.AE = AC.AH
b, BC. AK= AC.HC
c) AB. AE + AD. AK=AC^2
(vẽ cả hình)
a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có
góc EAC chung
=>ΔAEC đồng dạng với ΔAHB
=>AE/AH=AC/AB
=>AE*AB=AH*AC
b: Xét ΔKAC vuông tại K và ΔHCB vuông tại H có
góc KAC=góc HCB
=>ΔKAC đồng dạng với ΔHCB
=>AC/CB=KA/HC
=>AC*HC=CB*KA
c: AB*AE+AD*AK
=AB*AE+AK*CB
=AC*HC+AH*AC
=AC^2
Gọi AC là đường chéo lớn của hình bình hành ABCD ,E và F lần lượt là hình chiếu của C trên AB và AD , H là hình chiếu của D trên AC
a) Chứng minh rằng : AD.AF=AC.AH
b) AD.AF+AB.AE=AC2
a, Xét ΔAHD và ΔAFC có:
ˆAHD= ˆAFC=90 độ
ˆA chung
⇒ΔAHD và ΔAFC đồng dạng (g,g)
⇒AH/AF=AD/AC=AD/AC⇒AD.AF=AC.AH
b,
Từ B kẻ BK⊥AC
Chứng minh tương tự như trên ta có:
AB.AE=AK.AC
Mà AK=HC (tam giác ABK và tam giác CDH bằng nhau)
⇒AD.AF+AB.AE=AC.AH+AK.AC=AC(AH+AK)=AC(AH+HC)=AC.AC=AC^2
Cho hình bình hành ABCD( AC >BD), hình chiếu vuông góc của C lên AB,AD lần lượt là E và F ; H và K lần lượt là hình chiếu của D và B lên AC. Chứng minh: AB.AE + AD.AF = AC2
Cho hình bình hành ABCD ( AC>AB ). Gọi E, K lần lượt là hình chiếu vuông góc của C trên AB và AD, H là hình chiếu vuông góc của B trên AC. Chứng minh rằng:
AB.AE + AD.AK = AC2
Cần lời giải ....
cho hỏi tại sao hình bình hành mà chỉ có 3 đỉnh?
Bài 1: Cho tam giác ABC vuông tại , đường phân giác AD. Tính độ dài AB,AC biết DB=15cm, DC=20cm.
Bài 2: Cho hình bình hành ABCD (\(\widehat{A}< \widehat{B}\)). Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng:
a) AB.AE=AC.AH
b) BC.AK=AC.HCc) AB.AE+AD.AK=\(AC^2\)
Bài 3: Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB,AC theo thứ tự tại D và E. Gọi G là một điểm trên cạnh BC. Tính diện tích tứ giác ADGE nếu biết diện tích tam giác ABC=16\(cm^2\), diện tích tam giác ADE=9\(cm^2\)
EM CẦN GẤP CÂU C Ạ...
Cho hình bình hành ABCD có góc A nhọn. Gọi I, K là hình chiếu của B, D trên đường chéo AC. Gọi M, N là hình chiếu của C trên các đường thẳng AB, AD. Chứng minh:
a, AK = IC
b, Tứ giác BIDK là hình bình hành
c, AC2 = AD. AN + AB.AM
c) Dễ chứng minh: Tam giác ADK đồng dạng với tam giác ACN (g - g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AK}{AN}\)
=> AD.AN = AC.AK (1)
Dễ chứng minh: Tam giác ABI đồng dạng với tam giác ACM (g - g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AI}{AM}\)
=> AB.AM = AC.AI (2)
Từ (1) và (2)
=> AD.AN + AB.AM = AC.AK + AC.AI = AC.(AK + AI) = AC. (AK + IK + AI) = AC.(AK + IK + IC) = AC^2
Gọi AC là đường chéo lớn của hình bình hành ABCD; E, F là hình chiếu của C trên AB, AD. H là hình chiếu của D trên AC.
a) Chứng Minh: AD.AF=AC.AH
b) Chứng Minh: AE.CD=CH.AC
c) Chứng Minh: AD.AF + AB.AE = AC2
Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F
Chúng minh:1,CE.CD=CB.CF và △ABC đồng dạng △FCE
2,AB.AE+AD.AF=AC2
1) Có \(\widehat{ABC}=\widehat{ADC}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ADC}\) \(\Leftrightarrow\widehat{EBC}=\widehat{CDF}\)
Xét \(\Delta BCE\) và \(\Delta DCF\) có:
\(\Leftrightarrow\widehat{EBC}=\widehat{CDF}\)
\(\widehat{E}=\widehat{F}=90^0\)
nên \(\Delta BCE\sim\Delta DCF\left(g.g\right)\) \(\Rightarrow\dfrac{CE}{CF}=\dfrac{CB}{CD}\) \(\Leftrightarrow CE.CD=CF.CB\)
Có \(\widehat{EAF}+\widehat{ECF}=360^0-\widehat{AEC}-\widehat{AFC}=360^0-90^0-90^0=180^0\)
mà \(\widehat{BAD}+\widehat{ABC}=180^0\) (hai góc so le trong do BC//AD)
\(\Rightarrow\widehat{ECF}=\widehat{ABC}\) (1)
mà \(CE.CD=CB.CF\) (cm trên)\(\Leftrightarrow CE.AB=CB.CF\) \(\Leftrightarrow\dfrac{CE}{CB}=\dfrac{CF}{AB}\) (2)
Từ (1);(2) \(\Rightarrow\Delta ABC\sim\Delta FCE\left(c.g.c\right)\)
2. Kẻ \(DK\perp AC\) tại K
Dễ chững minh được \(\Delta ADK\sim ACF\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AD.AF=AC.AK\) (*)
Dễ chứng minh được \(\Delta CDK\sim\Delta ACE\left(g.g\right)\)
\(\Rightarrow\dfrac{CK}{AE}=\dfrac{CD}{AC}\Leftrightarrow CK.AC=AE.CD\) mà DC=AB
\(\Rightarrow AB.AE=CK.AC\) (3*)
Từ (*);(2*) cộng vế với vế \(\Rightarrow AB.AE+AD.AF=AC.CK+AC.AK=AC\left(CK+AK\right)\)
\(\Rightarrow AB.AE+AD.AF=AC^2\)
Vậy...
Bài 1: Cho tam giác ABC vuông tại , đường phân giác AD. Tính độ dài AB,AC biết DB=15cm, DC=20cm.
Bài 2: Cho hình bình hành ABCD (\(\widehat{A}< \widehat{B}\)). Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng:
a) AB.AE=AC.AH
b) BC.AK=AC.HC
c) AB.AE+AD.AK=AC\(^2\)
Bài 3: Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB,AC theo thứ tự tại D và E. Gọi G là một điểm trên cạnh BC. Tính diện tích tứ giác ADGE nếu biết diện tích tam giác ABC=16\(cm^2\), diện tích tam giác ADE=9\(cm^2\)