Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Trần Hoàng Anh
Xem chi tiết
YangSu
17 tháng 6 2023 lúc 14:53

\(P=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Ta có : \(\left|P\right|-P=0\) \(\Leftrightarrow\left|P\right|=P\Leftrightarrow\left|\dfrac{\sqrt{x}}{\sqrt{x}-2}\right|=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(+TH_1:x\ge0\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (luôn đúng)

\(+TH_2:x< 0\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}=0\)

\(\Leftrightarrow-2.\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)=0\)

\(\Leftrightarrow x=0\)

illumina
Xem chi tiết
YangSu
19 tháng 6 2023 lúc 7:43

\(P=A.B=\dfrac{2\sqrt{x}}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

Ta có : \(\sqrt{P}\le\dfrac{\sqrt{5}}{2}\Rightarrow\sqrt{\dfrac{2\sqrt{x}}{\sqrt{x}+1}}\le\dfrac{\sqrt{5}}{2}\left(dkxd:x\ge0\right)\)

Bình phương 2 vế bất pt, ta được :

\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}\le\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{2.4\sqrt{x}-5\left(\sqrt{x}+1\right)}{4\left(\sqrt{x}+1\right)}\le0\)

\(\Leftrightarrow8\sqrt{x}-5\sqrt{x}-5\le0\)

\(\Leftrightarrow3\sqrt{x}\le5\)

\(\Leftrightarrow\sqrt{x}\le\dfrac{5}{3}\)

\(\Leftrightarrow x\le\dfrac{25}{9}\)

Mà x phải là giá trị nguyên nên \(x\le2\) (với \(x\in Z\))

So với điều kiện \(x\ge0\Rightarrow0\le x\le2\)

Vậy \(x\in\left\{0;1;2\right\}\)

Hải Đăng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 21:59

1: \(=\left(1+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-9+x-4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{2x+\sqrt{x}-11}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-11\right)}\)

2: \(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

illumina
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 12:54

\(P=A:B=\dfrac{1-\sqrt{x}}{\sqrt{x}-2}:\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{1-\sqrt{x}}{2\sqrt{x}}\)

Có: \(\left|P+1\right|< 3P\left(ĐK:x>0\right)\)

\(\Leftrightarrow\left|\dfrac{1-\sqrt{x}}{2\sqrt{x}}+1\right|< 3.\dfrac{1-\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\) nên:

\(\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\dfrac{\sqrt{x}+1-3+3\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{4\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}}< 0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\2\sqrt{x}-1< 0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{1}{4}\)

Hoàng Tiến Long
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
Trên con đường thành côn...
4 tháng 8 2021 lúc 19:02

undefined

Phương Nguyễn
Xem chi tiết
Nhan Thanh
28 tháng 8 2021 lúc 10:32

\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{3}-x}\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 14:49

Ta có: \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Liên Phạm Thị
Xem chi tiết
Liên Phạm Thị
7 tháng 5 2022 lúc 12:49

mik cần gấp ạ^^