(x-1)(2x2-7x)+6
Phân tích đa thức thành nhân tử
\(x^2\)+5x+6
Phân tích đa thức thành nhân tử
\(x^2+5x+6=\left(x^2+2x\right)+\left(3x+6\right)=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
2x^3-5x-6
phân tích đa thức trên thành nhân tử
\(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
#\(Toru\)
Câu 1. Sử dụng máy tính để định hướng cách phân tích các đa thức sau thành nhân tử
A = x2 + 4x - 5
B = -x2 + 4x +5
C = 2x2 + 5x - 3
D = -2x2 + 5x - 3
E = -2x2 + 7x - 6
F = 2x2 - 7x +6
G = 2x2 + 7x +5
H = 2x2 - x - 6
casio fx 570 thì ấn mode => 5 => 3 sau điền hệ số a;b;c
casio fx 580 thì ấn mode => 9 => 2 => 2 => điền hệ số a;b;c
có cả cách này à =)))
menu setup -> 9 -> 2 - > 2 (pt cần phân tích) -> nhập hệ số của pt vào từng biến thích hợp -> ''=''
VD : \(A=x^2+4x-5\)có nghiệm \(x_1=1;x_2=-5\)
vậy đa thức cần phân tích là : \(\left(x-1\right)\left(x+5\right)=x^2+5x-x-5\)
Vậy \(A=x^2+4x-5=x^2+5x-x-5=\left(x-1\right)\left(x+5\right)\)
tương tự nhé
cùng vị trí nên tao lộn thôi =))
Phân tích đa thức thành nhân tử:
1) x2 - y2 - 2x + 1
2) x3 - 2x2 - x + 2
3) x2 - 2x2 - x + 2
1: =(x-1-y)(x-1+y)
3: =(x-1)(x+1)(x-2)
bài 1 phân tích các đa thức sau thành nhân tử
a) x2 + 4x +3 b) 16x - 5x2 - 3 c) 2x2 + 7x + 5
d) 2x2 + 3x -5 e) x3 - 3x2 + 1 - 3x f ) x2 - 4x - 5
g) (a2 + 1 )2 - 4a2 h) x3 - 3x2 - 4x + 12 i) x4 + x3 + x + 1
k) x4 - x3 - x2 + 1 l ) (2x + 1 )2 - ( x - 1 )
\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
bài 1 Phân tích đa thức thành nhân tử ( bằng kĩ thuật bổ sung hằng đẳng thức )
1, 2x2 - 3x - 2
2,4x2 - 7x - 2
3, 6x2 + 7x - 3
bài 2 phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử )
1, 3x2 + 7x - 6
2, 8x2 - 2x - 3
3, -8x2 + 5x + 3
4, -10x2 + 11x + 6
\(1,2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
\(2,4x^2-7x-2\)
\(=4x^2-8x+x-2\)
\(=4x\left(x-2\right)+x-2\)
\(\left(4x+1\right)\left(x-2\right)\)
Bài 1: Phân tích đa thức sau thành nhân tử
a,2x2 - 7x + 5
b,3x2 + 5x + 2
\(2x^2-7x+5=\left(2x^2-2x\right)-\left(5x-5\right)=2x\left(x-1\right)-5\left(x-1\right)=\left(2x-5\right)\left(x-1\right)\)
\(3x^2+5x+2=\left(3x^2+3x\right)+\left(2x+2\right)=3x\left(x+1\right)+2\left(x+1\right)=\left(3x+2\right)\left(x+1\right)\)
a: \(2x^2-7x+5=\left(x-1\right)\left(2x-5\right)\)
b: \(3x^2+5x+2=\left(x+1\right)\left(3x+2\right)\)
Phân tích đa thức sau thành nhân tử: x3 – 2x2 + x.
x3 – 2x2 + x
= x.x2 – x.2x + x (Xuất hiện nhân tử chung là x)
= x(x2 – 2x + 1) (Xuất hiện hằng đẳng thức (2))
= x(x – 1)2
Phân tích đa thức sau thành nhân tử : x3+ 2x2 +x
\(x^3+2x^2+x\)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
\(x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
Phân tích đa thức thành nhân tử:
a) x2-36y2-x+6y
b) 16x-8x2+x3
c) 2x2-4xy+2y2-18
d) 3x2-7x-10
e) x4-x2-30
f) x2-xy-2y2
g) x4-13x2y2+4y4
h) (x2-2x)2-2(x2-2x)-3
a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x-6y-1\right)\)
b) \(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c) \(=2\left(x-y\right)^2-18\)
\(=2\left[\left(x-y\right)^2-3^2\right]\)
\(=2\left(x-y+3\right)\left(x-y-3\right)\)
a: \(x^2-36y^2-x+6y\)
\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x+6y-1\right)\)
b: \(x^3-8x^2+16x\)
\(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c: \(2x^2-4xy+2y^2-18\)
\(=2\left(x^2-2xy+y^2-9\right)\)
\(=2\left(x-y-3\right)\left(x-y+3\right)\)
d: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
e: Ta có: \(x^4-x^2-30\)
\(=x^4-6x^2+5x^2-30\)
\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)
\(=\left(x^2-6\right)\left(x^2+5\right)\)
f: Ta có: \(x^2-xy-2y^2\)
\(=x^2-2xy+xy-2y^2\)
\(=x\left(x-2y\right)+y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+y\right)\)
g: Ta có: \(x^4-13x^2y^2+4y^4\)
\(=x^4-4x^2y^2+4y^4-9x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2+3xy-2y^2\right)\)