Tìm 2 số biết tổng của chúng bằng 19 và tổng các bình phương của chúng bằng 185
Tìm 2 số biết tổng của chúng bằng 19 và tổng các bình phương của chúng bằng 185
Vậy 2 số cần tìm là 8 và 11Gọi 2 số tự nhiên cần tìm là a,b (a>b)
Theo giả thiết, ta có
a + b = 19 và a^2 + b^2 = 185
=> 2ab = (a+b)^2 - (a^2+b^2) = 176 <=> ab = 88
=> a,b là nghiệm của pt x^2 - 19x + 88 = 0 (*)
(*) <=> (x-11)(x-8) = 0 <=> x= 8 hoặc x = 11
=> (a,b) = (11;8)
gọi x là số tự nhiên thứ nhất , y là số tự nhiên thứ hai . (x,y > 0)
tổng của chúng bằng 19
=> x + y = 19
<=> x = 19 - y
tổng các bình phương của chúng bằng 185
=> x^2 + y^2 = 185
<=> (19 - y)^2 + y^2 = 185
<=> 361 - 38y + y^2 + y^2= 185
<=> 2y^2 - 38y + 176 = 0
<=> y = 8 hoặc y = 11
y = 8 => x = 19 - 8 = 11
y = 11 => x = 19 - 11 = 8
vậy hai số tự nhiên đó là 8 và 11
Gọi 2 số đó lần lượt là a ; b
Theo bài ra ta có : a + b = 19 ( 1 ) và \(a^2+b^2=185\)( 2 )
\(\left(1\right)\Rightarrow a=19-b\)
Thay vào (2) ta được : \(\left(19-b\right)^2+b^2=185\)
\(\Leftrightarrow361-38b+b^2+b^2=185\Leftrightarrow2b^2-38b+176=0\)
\(\Leftrightarrow2\left(b-11\right)\left(b-8\right)=0\Leftrightarrow b=11;b=8\)
Thay b = 11 vào ( 1 ) ta được : \(a+11=19\Leftrightarrow a=8\)
Thay b = 8 vào ( 2 ) ta được : \(a+8=19\Leftrightarrow a=11\)
Vậy ( a ; b ) = ( 8 ; 11 ) ; ( 11 ; 8 )
tìm hai số biết tổng bằng 19 và tổng các bình phương của chúng bằng 185
đây là bài toán giải bằng cách lập phương trình.. ko có giải hệ nha anh chị .. giải giúp em vs ạ
Gọi số thứ nhất là x
\(\Rightarrow\)Số thứ hai là 19-x
Theo đề bài ta có phương trình:
x2+(19-x)2=185
\(\Leftrightarrow x^2+361-38x+x^2=185\)
\(\Leftrightarrow2x^2-38x+361-185=0\)
\(\Leftrightarrow2x^2-38x+176=0\)
\(\Leftrightarrow x^2-19x+88=0\)
\(\Leftrightarrow x^2-11x-8x+88=0\)
\(\Leftrightarrow x\left(x-11\right)-8\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-11\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-11=0\\x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=11\\x=8\end{cases}}\)
Vậy số thứ nhất là 8, số thứ hai là 19-8=11 hoặc số thứ nhất là 11, số thứ hai là 19-11=8
tìm 2 số biết tổng của chúng bằng 10 và tổng các bình phương của chúng bằng 250
Số thứ nhất : -5
Số thứ hai : 15
Đ/S : ...
....
Tìm 1 CSN có 4 số hạng biết tổng của chúng bằng 15 và tổng các bình phương của chúng bằng 85
Gọi các số hạng của CSN là \(u_1;u_1q;u_1q^2;u_1q^3\)
\(\Rightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2+q^3\right)=15\\u_1^2\left(1+q^2+q^4+q^6\right)=85\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1^2\left(q+1\right)^2\left(q^2+1\right)^2=225\\u_1^2\left(q^2+1\right)\left(q^4+1\right)=85\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(q+1\right)^2\left(q^2+1\right)}{q^4+1}=\dfrac{45}{17}\)
\(\Leftrightarrow14q^4-17q^3-17q^2-17q+14=0\)
Với \(q=0\) ko phải nghiệm, với \(q\ne0\)
\(\Leftrightarrow14\left(q^2+\dfrac{1}{q^2}\right)-17\left(q+\dfrac{1}{q}\right)-17=0\)
\(\Leftrightarrow14\left(q+\dfrac{1}{q}\right)^2-17\left(q+\dfrac{1}{q}\right)-45=0\Rightarrow\left[{}\begin{matrix}q+\dfrac{1}{q}=-\dfrac{9}{7}\\q+\dfrac{1}{q}=\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7q^2+9q+7=0\\2q^2-5q+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow u_1=\dfrac{15}{1+q+q^2+q^3}=...\)
tìm 2 số biết tổng của chúng bằng 10 và tổng các bình phương bằng 250
trong câu hỏi tương tự a có dạng như vậy
Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120.
A. 1,5,6,8
B. 2,4,6,8
C. 1,4,6,9
D. 1,4,7,8
tìm 3 số hạng liên tiếp của 1 cấp số cộng biết tổng của chúng bằng 12 và tổng các bình phương của chúng bằng 66
Lời giải:
Gọi số hạng đầu tiên là $a$ và công sai $d$. Khi đó số hạng thứ 2 và 3 lần lượt là $a+d, a+2d$
Theo bài ra ta có:
$a+(a+d)+(a+2d)=12$
$\Rightarrow a+d=4$
$a^2+(a+d)^2+(a+2d)^2=66$
$\Leftrightarrow 3a^2+5d^2+6ad=66$
$\Leftrightarrow 3(4-d)^2+5d^2+6(4-d)d=66$
$\Leftrightarrow 2d^2-18=0$
$\Leftrightarrow d=\pm 3$
Nếu $d=3$ thì $a=1$. Khi đó 3 số cần tìm là $1,4, 7$
Nếu $d=-3$ thì $a=7$. Khi đó 3 số cần tìm là $7, 4, 1$
\(S_3=\dfrac{3\left[2u_1+2d\right]}{2}\)
\(\Leftrightarrow2u_1+2d=\dfrac{2S_3}{3}\)
\(\Leftrightarrow2\left(u_1+d\right)=\dfrac{2S_3}{3}\)
\(\Leftrightarrow u_1+d=\dfrac{S_3}{3}=\dfrac{12}{3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_2=4\\u_3=7\end{matrix}\right.\)
mà \(u_1^2+u_2^2+u_3^2=1^2+4^2+7^2=66\) (thỏa đề bài)
Vậy 3 số hạng liên tiếp của 1 cấp số cộng là : \(1;4;7\)
Tìm 2 số biết tỉ số của chúng bằng 5/7 và tổng các bình phương của chúng là 4736
Bấm vô đây:
Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath
tìm hai số biết tỉ số của chúng bằng 5/7 và tổng các bình phương của chúng bằng 4736 ?
Gọi hai số cần tìm lần lượt là a và b
Tỷ số của hai số là \(\frac{5}{7}\Rightarrow a:b=\frac{5}{7}\) (1)
Theo đề ra, ta có: Tổng các bình phương của chúng bằng 4736 \(\Rightarrow a^2+b^2=4736\) (2)
Từ (1) và (2) ta có hệ:
\(\hept{\begin{cases}a:b=\frac{5}{7}\\a^2+b^2=4736\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5y}{7}\\\left(\frac{5y}{7}\right)^2+y^2=4736\end{cases}}}\Rightarrow\hept{\begin{cases}x=\pm40\\y=\pm56\end{cases}}\)