Gọi các số hạng của CSN là \(u_1;u_1q;u_1q^2;u_1q^3\)
\(\Rightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2+q^3\right)=15\\u_1^2\left(1+q^2+q^4+q^6\right)=85\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1^2\left(q+1\right)^2\left(q^2+1\right)^2=225\\u_1^2\left(q^2+1\right)\left(q^4+1\right)=85\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(q+1\right)^2\left(q^2+1\right)}{q^4+1}=\dfrac{45}{17}\)
\(\Leftrightarrow14q^4-17q^3-17q^2-17q+14=0\)
Với \(q=0\) ko phải nghiệm, với \(q\ne0\)
\(\Leftrightarrow14\left(q^2+\dfrac{1}{q^2}\right)-17\left(q+\dfrac{1}{q}\right)-17=0\)
\(\Leftrightarrow14\left(q+\dfrac{1}{q}\right)^2-17\left(q+\dfrac{1}{q}\right)-45=0\Rightarrow\left[{}\begin{matrix}q+\dfrac{1}{q}=-\dfrac{9}{7}\\q+\dfrac{1}{q}=\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7q^2+9q+7=0\\2q^2-5q+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow u_1=\dfrac{15}{1+q+q^2+q^3}=...\)