cho x và y là số thực thảo mãn : 2x=3y=5z va |x-2y|=5
tìm GTLN của 3x-2z
cho x,y,z là các số thực thõa mãn: 2x=3y=5z và \(|x-2y|=5\)
Tìm GTLN của 3x-2z
| x - 2y | = 5
\(\Rightarrow\)\(\orbr{\begin{cases}x-2y=5\\x-2y=-5\end{cases}}\)
Theo bài ra : 2x = 3y = 5z
\(\Rightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{3x}{45}=\frac{2y}{20}=\frac{2z}{12}=\frac{3x-2z}{45-12}=\frac{x-2y}{15-20}\)
+) với x- 2y = 5 thì \(\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=-1\)\(\Rightarrow3x-2z=-33\)
+) với x - 2y = -5 thì \(\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=1\)\(\Rightarrow3x-2z=33\)
Vậy GTLN của 3x - 2z là 33
\(2x=3y\Leftrightarrow x=\frac{3y}{2}\)
Vậy ...
\(\left|\frac{3y}{2}-2y\right|=5\)" thay \(x=\frac{3y}{2}\)vào "
\(\left|\frac{3y-4y}{2}\right|=5\)" quy đồng"
\(\left|\frac{-y}{2}\right|=5\)" rút gọn
Giá trị tuyệt đối với -y ta được:
\(\frac{y}{2}=5\Leftrightarrow y=10\)
Tương tự ta có :
\(x=\frac{5z}{2};2y=\frac{10z}{3}\)
\(\left|\frac{5z}{2}-\frac{10z}{3}\right|=5\Leftrightarrow\left|\frac{15z-20z}{6}\right|=5\Leftrightarrow\left|\frac{-5z}{6}\right|=5\)
Gía trị tuyệt đối với -5z âm ta được :
\(5z=30\Leftrightarrow z=6\)
Tương tự với x suy ra x = 15 "làm tắt "
Từ 1,2,3
Suy ra x = 15 ; y = 10 ; z = 6
Thay số ta được :
\(3.15-2.6=45-12=33\)
Cho x, y, z là các số thực thỏa mãn: 2x= 3y= 5z và |x-2y|= 5
Tìm giá trị lớn nhất của 3x - 2z
Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath
tham khảo nhé
Cho x, y, z là các số thực thỏa mãn:
2x = 3y = 5z và |x - 2y| = 5.
Tìm giá trị lớn nhất của 3x – 2z.
Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath
Tham khảo ơ link này nhé!
cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2\ge\dfrac{1}{3}\)
chứng minh \(\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\ge\dfrac{1}{30}\)
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Cho x,y,z là các số thực dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=12\)
Tìm GTLN của biểu thức \(P=\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\)
Má mày giúp tao bài tao gửi đii:(
Ta có bất đẳng thức: với \(x,y>0\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Dấu \(=\)khi \(x=y\).
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)
\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)
Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)
Cho các số thực dương x,y,z thỏa mãn:x^2+y^2+z^2≥1/3
CMR: x^3/2x+3y+5z + y^3/2y+3z+5x + z^3/2z+3x+5y ≥1/30
GIÚP GẤP
\(P=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(P=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(x^2+y^2+z^2\right)}\)
\(P\ge\dfrac{x^2+y^2+z^2}{10}\ge\dfrac{1}{30}\)
\(P_{min}=\dfrac{1}{30}\) khi \(x=y=z=\dfrac{1}{3}\)
Cho x, y, z là các số thực thỏa mãn: 2x = 3y = 5z và |x - 2y| = 5
Tìm giá trị lớn nhất của 3x - 2z
Ta có: \(2x=3y\Leftrightarrow2x-3y=0\)
\(\left|x-2y\right|=5\Leftrightarrow\left[{}\begin{matrix}x-2y=5\\-x+2y=5\end{matrix}\right.\)
Ta có hệ pt: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3y=0\\x-2y=5\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3y=0\\-x+2y=5\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-15\\y=-10\end{matrix}\right.\\\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z=\frac{2.\left(-15\right)}{5}=-6\\z=\frac{2.15}{5}=6\end{matrix}\right.\)
Với x=-15 ; z=-6 thì \(3x-2z=3.\left(-15\right)-2.\left(-6\right)=-33\)
Với x=15 ; z=6 thì \(3x-2z=3.15-2.6=33\)
Vậy giá trị lớn nhất của 3x-2z=33 khi x=15, z=6 và y=10
Cho x,y,z là các số thực thỏa mãn : 2x = 3y = 5z và / x - 2y / = 5.
Tìm giá trị lớn nhất của 3x - 2z
Cho ba số thực x, y, z thỏa mãn đồng thời các biểu thức: x + 2 y + 3 z - 10 = 0 , 3 x + y + 2 z - 13 = 0 và 2 x + 3 y + z - 13 = 0 . Tính T = 2 ( x + y + z ) ?
A. T = 12
B. T = -12
C. T = -6
D. T = 6